Iterated Quadratic Extensions Over \mathbb{Q} (Version 1.2)

Po-Shen Loh

7 May 2001

Problem 1 Let $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be a set of distinct positive integers such that no product of distinct elements is a square, and let $a_{i}=\sqrt{c_{i}}$ for each i. Prove that $\left[\mathbb{Q}\left(a_{1}, a_{2}, \ldots, a_{n}\right): \mathbb{Q}\right]=2^{n}$ and the extension is Galois over \mathbb{Q} with Galois group isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \cdots \times \mathbb{Z} / 2 \mathbb{Z}$ (n times).

Solution:

We use strong induction. Our base case is $n=2$, which follows immediately since it is a biquadratic extension.

Suppose that our problem is true for all $n \leq N$. We show that it is true for an $(N+1)$-set of a_{i}. Let $\mathcal{S}=\left\{a_{1}, a_{2}, \ldots, a_{N+1}\right\}$, let K be the extension of \mathbb{Q} by \mathcal{S} and consider a subset $\mathcal{T} \subset \mathcal{S}$ with N elements. By inductive hypothesis, we know that the degree of the extension of \mathbb{Q} with elements of \mathcal{T} is 2^{N}.

Proceed by contradiction; suppose that $\left[\mathbb{Q}\left(a_{1}, a_{2}, \ldots, a_{N+1}\right): \mathbb{Q}\right] \neq 2^{N+1}$. It contains \mathcal{T}, so the extension must have degree 2^{N}, so it is exactly the extension field generated by the elements of \mathcal{T}. By inductive hypothesis, it is Galois over \mathbb{Q} and has elementary Abelian Galois group G.

Since each subgroup $H \leq G$ is a subgroup of the elementary Abelian group of order 2^{N}, by the theorem of Finitely Generated Abelian Groups, it is a direct product of cyclic groups, and since all elements have order dividing $2, H$ must also be elementary Abelian.

We can determine what the corresponding subfields look like. H is of the form $\left\langle\sigma_{1}\right\rangle \times\left\langle\sigma_{2}\right\rangle \times \cdots \times\left\langle\sigma_{k}\right\rangle$ where σ_{i} conjugates its associated (quadratic) root d_{i}. Then, its fixed field will be an extension of \mathbb{Q} by quadratics d_{i} which are products of the a_{i}. Since H is elementary Abelian, it is generated by N elements only if it is G.

Let m be the number of intermediate subfields of the extension generated over \mathbb{Q} by \mathcal{T}. Since we have a Galois extension, there are exactly m intermediate subfields under K. Let $\{b\}=\mathcal{S}-\mathcal{T}$. Clearly, $\mathbb{Q}(b)$ is a subfield of the full extension K, so it must be one of the m subfields, say $\mathbb{Q}\left(d_{1}, d_{2}, \ldots, d_{k}\right)$. If $k=N$, then from the previous paragraph, this corresponds the full group; this is impossible because $[\mathbb{Q}(b): \mathbb{Q}]=2 \neq 2^{N}=[\mathbb{Q}(\mathcal{T}): \mathbb{Q}]$.

So $k \neq N$. If we could form a product of distinct generators d_{i} that was in \mathbb{Q}, then we could simply discard one of them and have the same field. Therefore, we can assume that $k<N$ and no product of distinct generators is rational. Furthermore, by the construction above for the subfields, no product of distinct generators and b can be rational, because each $b_{i}^{2} \in \mathbb{Q}$ so any product of distinct generators can be reduced to a product of distinct b_{i}. We can then apply the inductive hypothesis on $\mathbb{Q}\left(d_{1}, \ldots, d_{k}, b\right)$, and conclude that $\mathbb{Q}\left(d_{i}, \ldots, d_{k}\right) \neq \mathbb{Q}(b)$. We have a contradiction.

Thus, $[K: \mathbb{Q}]=2^{N+1}$. Since it is Galois, it must have exactly 2^{N+1} automorphisms. All automorphisms permute the roots within each irreducible factor, and since there are exactly $N+1$ such factors with two ways to make an map out of each, we find 2^{N+1} maps. Since there are no other kinds of maps and the roots are generators, each map must be an automorphism, and the Galois group is indeed $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \cdots \times \mathbb{Z} / 2 \mathbb{Z}$ (n times).

And we are done.

