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1 Warm-Up

1. Let F be a collection of subsets A1, A2, . . . of {1, . . . , n}, such that for each i 6= j, Ai ∩Aj 6= ∅. Prove
that F has size at most 2n−1.

Solution: For each set S ∈ 2[n], observe that at most one of S and S is contained in F .

2. Suppose that F above has size exactly 2n−1. Must there be a common element x ∈ {1, . . . , n} which
is contained by every Ai?

Solution: No. First, observe that in [3], one can create an intersecting family with the four sets
{1, 2}, {2, 3}, {3, 1}, and {1, 2, 3}. Then for every n ≥ 3, one can blow up this construction by taking
all sets S which are obtained by taking the union of one of these 4 sets together with an arbitrary
subset of {4, . . . , n}.

3. Let F be a family of sets, each of size exactly 3, such that:

(a) Every pair of sets intersects in a single element.

(b) Every pair of elements in the ground set X =
⋃

S∈F S is contained in a unique set S ∈ F .

Suppose that F has more than one set. Prove that the ground set X has exactly 7 elements, and show
that such a family F exists.

Solution: Let L be the number of “lines,” i.e., sets in F , and let n be the size of the ground set.
Observations:

• The degree of any element is exactly n−1
2 , because of (b).

• The number of lines is L = 1
3

(
n
2

)
because of (a).

But by double-counting, we must have: ∑
v∈X

(
dv
2

)
=

(
L

2

)
.

Substituting our expressions for dv and L, we conclude that

n · 1

2

(
n− 1

2
· n− 3

2

)
=
L(L− 1)

2
=
n(n− 1)

6
· (n− 3)(n+ 2)

6

1

4
=
n+ 2

36
7 = n .

The Fano plane provides the desired construction.
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2 Designs

1. (TST 2005/1.) Let n be an integer greater than 1. For a positive integer m, let Xm = {1, 2, . . . ,mn}.
Suppose that there exists a family F of 2n subsets of Xm such that:

(a) each member of F is an m-element subset of Xm;

(b) each pair of members of F shares at most one common element;

(c) each element of Xm is contained in exactly 2 elements of F .

Determine the maximum possible value of m in terms of n.

Solution: Count in two ways:∑
v

(
dv
2

)
= # set pairs intersect ≤

(
2n

2

)
.

But all dv = 2, so we have mn ≤ n(2n − 1), i.e., m ≤ 2n − 1. Equality is possible: take 2n lines in
general position in R2, and let their

(
2n
2

)
= mn intersection points be the points.

2. (USAMO 2011/6.) Let X be a set with |X| = 225. Suppose further that there are eleven subsets
A1, . . . , A11 of X such that |Ai| = 45 for 1 ≤ i ≤ 11 and |Ai ∩ Aj | = 9 for 1 ≤ i < j ≤ 11. Prove that
|A1 ∪ · · · ∪A11| ≥ 165, and give an example for which equality holds.

Solution: The |X| = 225 condition is unnecessary. Count in two ways:∑
v∈X

(
dv
2

)
=

(
11

2

)
· 9 = 495 .

But also
∑

v∈X dv = 11 · 45 = 495. This suggests that equality occurs when all dv =
(
dv

2

)
, which is

precisely at dv = 3.

Indeed, by Cauchy-Schwarz, if we let Let n = |X|, we find(∑
v∈X

1dv

)2

≤

(∑
v∈X

1

)(∑
v∈X

d2v

)
4952 ≤ n · 3 · 495 ,

where we deduced
∑
d2v = 3 · 495 from

∑(
dv

2

)
and

∑
dv. We conclude that n ≥ 165.

For the construction, take 11 planes in general position in R3, and let their
(
11
3

)
= 165 points of

intersection be the points in the set.

3. A collection of subsets L1, . . . , Lm in the universe {1, . . . , n} is called a projective plane if:

(a) Every pair of sets (called “lines”) intersects in a single element.

(b) Every pair of elements in the ground set X =
⋃

L∈F S is contained in a unique set L ∈ F .

Actually, there are two families of degenerate planes which satisfy the two conditions above, but are
not considered to be projective planes. They are:

(a) L1 = {1, . . . , n}, L2 = {1}, L3 = {1}, L4 = {1}, . . .

(b) L1 = {2, 3, . . . , n}, L2 = {1, 2}, L3 = {1, 3}, L4 = {1, 4}, . . . , Ln = {1, n}.

It is well-known that for every projective plane, there is an N (called the “order” of the plane) such
that:
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(a) Every line contains exactly N + 1 points, and every point is on exactly N + 1 lines.

(b) The total number of points is exactly N2 +N + 1, which is the same as the total number of lines.

4. For every prime power pn, there exists a projective plane of that order.

Solution: Take the finite field Fq of order q = pn. Let the points be dimension-1 subspaces of F3
q ,

and let the lines be dimension-2 subspaces (i.e., the collection of dimension-1 subspaces that lie within
a given dimension-2 subspace).

Every pair of dimension-2 subspaces intersects in a subspace, which has integer dimension. That
dimension is obviously strictly less than 2, but also cannot be 0 or else we would have had mutually
independent bases of the pair of dimension-2 subspaces, already yielding dimension 4 for the parent
space. Hence every pair of dimension-2 subspaces intersects in a dimension-1 subspace, i.e., containing
a single point.

Also, every pair of dimension-1 subspaces determines a pair of linearly independent basis vectors, whose
span is already dimension-2. So For every pair of dimension-1 subspaces, there is a unique dimension-2
subspace that contains both of them.

Observe that by calculation, the number of dimension-1 subspaces inside a fixed dimension-2 subspace

is exactly q2−1
q−1 = q + 1, because there are q2 nonzero vectors in the dimension-2 subspace, and every

pair of dimension-1 subspaces intersects only at the zero vector. Hence the order is q = pn.

5. (Open.) What are the possible orders of projective planes? All known projective planes have prime
power order, but it is unknown whether, for example, there is a projective plane of order 12.

3 Graphs and partitioning

1. Construct a bipartite graph in which all degrees are equal, and every pair of vertices on the same side
has exactly 1 common neighbor. Show that this must achieve the maximum possible number of edges
in any C4-free bipartite graph with the same number of vertices.

Solution: Take a projective plane, and create a graph by putting the points on the left, and the lines
on the right, connecting a point to a line if they are incident. The codegree conditions are satisfied by
the definition of a projective plane.

Now suppose we have a C4-free bipartite graph with n vertices on each side. Count the number of K1,2

with 2 points on the Right side. This is(
n

2

)
≥
∑
v

(
dv
2

)
≥ n

(
d

2

)
,

with equality precisely when the degrees are all equal, and when every pair on the Right side has
codegree exactly 1. Since we are optimizing the average degree, this implies the result.

2. Construct a non-bipartite graph in which all degrees are equal, and every pair of vertices has exactly 1
common neighbor. Show that this must achieve the maximum possible number of edges in any C4-free
graph with the same number of vertices.

Solution: Consider F3, and associate every vertex with a 1-dimensional subspace. Join two vertices
by an edge if their two subspaces are orthogonal. But given two distinct subspaces, there is a unique
1-dimensional subspace orthogonal to both of them.

Another way to see this is to say that we join two vertices if one of the dimension-1 subspaces lies
within the orthogonal complement (dimension-2 subspace) of the other vertex. Then if we are given two
distinct dimension-1 subspaces, the number of common neighbors is the number of common dimension-2
subspaces that contain both, and this is the same calculation as above.

For tightness, take the same sum of all K1,2 throughout the graph.
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3. Let n be odd. Partition the edge set of Kn into n matchings with n−1
2 edges each.

Solution: Spread the n vertices around a circle. Take parallel classes.

4. Let n be even. Partition the edge set of Kn into n− 1 matchings with n
2 edges each.

Solution: Spread n− 1 vertices around a circle, and let the final vertex be the origin. Take parallel
classes, along with the orthogonal radius from the origin.

5. Find (nontrivial) infinite families of t and n for which it is possible to partition the edges of Kn into
disjoint copies of edges corresponding to Kt.

Solution: Suppose n = q2 + q + 1 for a prime power q. Take a projective plane, and identify the
vertices of Kn with the points. The cliques Kt correspond to the lines.

Alternatively, suppose n = q2 for a prime power q. Take the affine plane, i.e., points corresponding to
F2
q. Lines correspond to the points in affine lines, i.e., with q points each. It is clear that every pair of

points determines a unique line, hence every edge is in a unique Kq.

4 Extremal set theory

1. (Erdős-Ko-Rado.) Let n ≥ 2k be positive integers, and let C be a collection of pairwise-intersecting
k-element subsets of {1, . . . , n}, i.e., every A,B ∈ C has A ∩B 6= ∅. Prove that |C| ≤

(
n−1
k−1
)
.

Remark. This corresponds to the construction which takes all subsets that contain the element 1.

Solution: Pick a random k-set A from 2[n] by first selecting a random permutation σ ∈ Sn, and
then picking a random index i ∈ [n]. Then define A = {σ(i), . . . , σ(i + k − 1)}, with indices after n
wrapping around, of course. It suffices to show that P [A ∈ C] ≤ k/n.

Let us show that conditioned on any fixed σ, P [A ∈ C|σ] ≤ k/n, which will finish our problem. But
this is equivalent to the statement that C can only contain ≤ k intervals (wrapping after n) of the form
{i, . . . , i+ k − 1}, which is easy to show.

2. (Non-uniform Fisher’s inequality.) Let C = {A1, . . . , Ar} be a collection of distinct subsets of {1, . . . , n}
such that every pairwise intersection Ai ∩ Aj (i 6= j) has size t, where t is some fixed integer between
1 and n inclusive. Prove that |C| ≤ n.

Solution: Consider the n×r matrix A, where the i-th column of A is the characteristic vector of Ai.
Then, ATA is a r×r matrix, all of whose off-diagonal entries are t. We claim that the diagonal entries
are all > t. Indeed, if there were some |Ai| which were exactly t, then the structure of C must look like
a “flower,” with one set Aj of size t, and all other sets fully containing Aj and disjointly partitioning
the elements of [n] \ Aj among them. Any such construction has size at most 1 + (n − t) ≤ n, so we
would already be done.

Therefore, ATA is nonsingular by Lemma below, and the previous argument again gives r ≤ n.

LEMMA: Let A be a square matrix over R, for which all non-diagonal entries are all equal to some
t ≥ 0, and all diagonal entries are strictly greater than t. Then A is nonsingular.

Proof. If t = 0, this is trivial. Now suppose t > 0. Let J be the all-ones square matrix, and let
D = A− tJ. Note that D is nonzero only on the diagonal, and in fact strictly positive there. We would
like to solve (tJ + D)x = 0, which is equivalent to Dx = −tJx. Let s be the sum of all elements in x,
and let the diagonal entries of D be d1, . . . , dn, in order. Then, we have dixi = −ts⇒ xi = −(t/di)s.
But since t and di are both strictly postive, this forces every xi to have opposite sign from s, which is
impossible unless all xi = 0. Therefore, A is nonsingular.
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5 Combinatorics and geometry

1. (Happy ending problem.) Given any 5 distinct points in the plane, no 3 collinear, show that some 4
are in convex position, i.e., forming the vertices of a convex quadrilateral.

Solution: If the convex hull has size 4 or more, already done. Otherwise, convex hull is a triangle
ABC and there are 2 internal points. Consider the line ` determined by those internal points. Since
no 3 collinear, it divides {A,B,C} into two groups, one of which has size 2. Use those 2, plus the 2
internal points.

2. (Erdős-Szekeres.) For every integer n, there is some finite N such that the following holds. Given any
N distinct points in the plane, no 3 collinear, some n are in convex position.

Remark. It is conjectured that N = 1 + 2n−2 suffices for all n ≥ 3, and known that N ≥ 1 + 2n−2 is
required. The best known upper bound is of order 4n/

√
n.

Solution: If a set S of points has the property that every 4-subset is in convex position, then all of
S is in convex position. To see this, suppose there was some point P strictly inside the convex hull of
S. Triangulate the convex hull using diagonals, and P will be strictly inside one of the triangles, say
ABC. Then PABC is concave, contradiction.

Now suppose we have R(4)(5, n) many points. For every 4-set of points, color the corresponding 4-edge
red if they are not in convex position, blue otherwise. Our hypergraph Ramsey bound implies that
there must either be 5 vertices with all 4-edges red, or n vertices with all 4-edges blue.

But the 5 vertices with all 4-edges red contradicts the Happy Ending Problem, so we must have the
latter. By our opening remark, in fact the n points are all in convex position.

3. (Caratheodory.) A convex combination of points xi is defined as a linear combination of the form∑
i αixi, where the αi are non-negative coefficients which sum to 1.

Let X be a finite set of points in Rd, and let cvx(X) denote the set of points in the convex hull of X,
i.e., all points expressible as convex combinations of the xi ∈ X. Show that each point x ∈ cvx(X) can
in fact be expressed as a convex combination of only d+ 1 points of X.

Solution: Given a convex combination with d + 2 or more nonzero coefficients, find a new vector
with which to perturb the nonzero coefficients. Specifically, seek

∑
i βixi = 0 and

∑
i βi = 0, which is

d + 1 equations, but with d + 2 variables βi. So there is a non-trivial solution, and we can use it to
reduce another αi coefficient to zero.

4. (Radon.) Let A be a set of at least d+ 2 points in Rd. Show that A can be split into two disjoint sets
A1 ∪A2 such that cvx(A1) and cvx(A2) intersect.

Solution: For each point, create an Rd+1-vector vi by adding a “1” as the last coordinate. We
have a non-trivial dependence because we have at least d + 2 vectors in Rd+1, say

∑
i αivi = 0. Split

A = A1 ∪A2 by taking A1 to be the set of indices i with αi ≥ 0, and A2 to be the rest.

By the last coordinate, we have ∑
i∈A1

αi =
∑
i∈A2

(−αi) .

Let Z be that sum. Then if we use αi/Z as the coefficients, we get a convex combination from A1 via
the first d coordinates, which equals the convex combination from A2 we get by using (−αi)/Z as the
coefficients.

5. (Helly.) Let C1, C2, . . . , Cn be convex sets of points in Rd, with n ≥ d + 1. Suppose that every d + 1
of the sets have a non-empty intersection. Show that all n of the sets have a non-empty intersection.

Solution: Induction on n. Clearly true for n = d+ 1, so now consider n ≥ d+ 2, and assume true
for n− 1. Then by induction, we can define points ai to be in the intersection of all Cj , j 6= i. Apply
Radon’s Lemma to these ai, to get a split of indices A ∪B.
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Crucially, note that for each i ∈ A and j ∈ B, the point ai is in Cj . So, each i ∈ A gives ai ∈
⋂

j∈B Cj ,
and hence the convex hull of points in A is entirely contained in all Cj , j ∈ B.

Similarly, the convex hull of points in B is entirely contained in all Cj , j ∈ A. Yet Radon’s Lemma
gave intersecting convex hulls, so there is a point in both hulls, i.e., in all Cj , j ∈ A ∪B = [n].

6 Bonus problems

1. (From Peter Winkler.) The 60 MOPpers were divided into 8 teams for Team Contest 1. They were
then divided into 7 teams for Team Contest 2. Prove that there must be a MOPper for whom the size
of her team in Contest 2 was strictly larger than the size of her team in Contest 1.

Solution: In Contest 1, suppose the team breakdown was s1 + · · ·+ s8 = 60. Then in the i-th team,
with si people, say that each person did 1

si
of the work. Similarly, in Contest 2, account equally for

the work within each team, giving scores of 1
s′i

.

However, the total amount of work done by all people in Contest 1 was then exactly 8, and the total
amount of work done by all people in Contest 2 was exactly 7. So somebody must have done strictly
less work in Contest 2. That person saw

1

s′i
<

1

si
,

i.e., the size of that person’s team on Contest 2 was strictly larger than her team size on Contest 1.

2. (MOP 2008.) Let F be a collection of 2n−1 subsets A1, A2, . . . of {1, . . . , n}, such that for each i 6= j 6= k,
Ai ∩Aj ∩Ak 6= ∅. Prove that there is a common element x ∈ {1, . . . , n} that is contained in every Ai.

Solution: Observe that if there is a pair of sets which intersects at a single element, then the
condition forces all other sets to contain that element as well. So suppose for contradiction that we
have a family of sets such that each pair intersects in at least 2 points. We show by induction that the
number of such sets is strictly smaller than 2n−1.

Indeed, if n = 2, this is clear. Then suppose we are considering some n and it is true for n − 1. Pull
out the element n. The sets which do not contain n must be a system which has all intersections at
least 2, hence of size strictly smaller than 2n−2. But the sets which do contain n must be at least an
ordinary pairwise intersecting family, hence of size ≤ 2n−2. Adding, we are done.

3. (Sperner capacity of cyclic triangle, also Iran 2006.) Let A be a collection of vectors of length n from
Z3 with the property that for any two distinct vectors a, b ∈ A there is some coordinate i such that
bi = ai + 1, where addition is defined modulo 3. Prove that |A| ≤ 2n.

Solution: For each a ∈ A, define the Z3-polynomial fa(x) :=
∏n

i=1(xi − ai − 1). Observe that
this is multilinear. Clearly, for all a 6= b ∈ A, fa(b) = 0, and fa(a) 6= 0; therefore, the fa are linearly
independent, and bounded in cardinality by the dimension of the space of multilinear polynomials in
n variables, which is 2n.
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