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1 Warm-up

Sharpening inequalities can help to reduce the number of variables. Prove that inequality (2) is sharper
than (1), for all reals x, y ≥ 0.

(x + y)2

16
+ 1 ≥ √

xy (1)

(x + y)2

16
+ 1 ≥ x + y

2
(2)

Then prove (2), using the substitution t = x+y
2 . Single-variable inequalities can be quite easy!

Solution: The substitution gives something equivalent to ( t
2 − 1)2 ≥ 0.

2 Tools

Recall that a set S (say in the plane) is convex if for any x, y ∈ S, the line segment with endpoints x and y
is completely contained in S. It turns out that this concept is very useful in the theory of functions.

Definition. We say that a function f(x) is convex on the interval I when the set {(x, y) : x ∈ I, y ≥ f(x)}
is convex. On the other hand, if the set {(x, y) : x ∈ I, y ≤ f(x)} is convex, then we say that f is concave.
Note that it is possible for f to be neither convex nor concave. We say that the convexity/concavity is strict
if the graph of f(x) over the interval I contains no straight line segments.

Remark. Plugging in the definition of set-theoretic convexity, we find the following equivalent definition.
The function f is convex on the interval I iff for every a, b ∈ I, the line segment between the points (a, f(a))
and (b, f(b)) is always above or on the curve f . Analogously, f is concave iff the line segment always lies
below or on the curve. This definition is illustrated in Figure 1.

After the above remark, the following famous and useful inequality should be quite believable and easy
to remember.

Theorem. (Basic version of Jensen’s Inequality) Let f(x) be convex on the interval I. Then for any
a, b ∈ I,

f

(
a + b

2

)
≤ f(a) + f(b)

2
.

On the other hand, if f(x) is concave on I, then we have the reverse inequality for all a, b ∈ I:

f

(
a + b

2

)
≥ f(a) + f(b)

2
.

Remark. This can be interpreted as “for convex f , the average of f exceeds f of the average,” which
motivates the general form of Jensen’s inequality:
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Figure 1: The function in (i) is convex, (ii) is concave, and (iii) is neither. In each diagram, the dotted line segments represent
a sample line segment as in the definition of convexity. However, note that a function that fails to be globally convex/concave
can be convex/concave on parts of their domains. For example, the function in (iv) is convex on the part where it is solid and
concave on the part where it is dotted.

Theorem. (Jensen’s Inequality) Let f(x) be convex on the interval I. Then for any x1, . . . , xt ∈ I,

f(average of {xi}) ≤ average of {f(xi)}.

If f were concave instead, then the inequality would be reversed.

Remark. We wrote the above inequality without explicitly stating what “average” meant. This is to allow
weighted averages, subject to the condition that the same weight pattern is used on both the LHS and RHS.

2.1 That’s great, but how do I prove that a function is convex?

1. If you know calculus, take the second derivative. It is a well-known fact that if the second derivative
f ′′(x) is ≥ 0 for all x in an interval I, then f is convex on I. On the other hand, if f(x) ≤ 0 for all
x ∈ I, then f is concave on I.

2. By the above test or by inspection, here are some basic functions that you should safely be able to
claim are convex/concave.

• Constant functions f(x) = c are both convex and concave.

• Powers of x: f(x) = xr with r ≥ 1 are convex on the interval 0 < x < ∞, and with 0 < r ≤ 1
are concave on that same interval. (Note that f(x) = x is both convex and concave!)

• Reciprocal powers: f(x) = 1
xr are convex on the interval 0 < x < ∞ for all powers r > 0. For

negative odd integers r, f(x) is concave on the interval −∞ < x < 0, and for negative even
integers r, f(x) is convex on the interval −∞ < x < 0.

• The logarithm f(x) = log x is concave on the interval 0 < x < ∞, and the exponential f(x) = ex

is convex everywhere.

3. f(x) is convex iff −f(x) is concave.

4. You can combine basic convex functions to build more complicated convex functions.

• If f(x) is convex, then g(x) = c · f(x) is also convex for any positive constant multiplier c.

• If f(x) is convex, then g(x) = f(ax+ b) is also convex for any constants a, b ∈ R. But the interval
of convexity will change: for example, if f(x) were convex on 0 < x < 1 and we had a = 5, b = 2,
then g(x) would be convex on 2 < x < 7.

• If f(x) and g(x) are convex, then their sum h(x) = f(x) + g(x) is convex.
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5. If you are brave, you can invoke the oft-used claim “by observation,” e.g,

f(x) = |x| is convex by observation.

The above statement might actually pass, depending on the grader, but the following desparate state-
ment definitely will not:

f(x) = (x+1)2

2x2+(3−x)2 is concave by observation.

(It is false anyway, so that would ruin your credibility. . . )

Now prove the following results.

1. f(x) = 1
1−x is convex on −∞ < x < 1.

2. For any constant c ∈ R, f(x) = x2

c−x is convex on −∞ < x < c.

Solution:
x2

c− x
= − x2

x− c
= −

[
x + c +

c2

x− c

]
= −x− c− c2

x− c

Each summand is convex.

3. f(x) = x(x−1)
2 is convex.

Solution: Expand: x2/2− x/2. This is sum of two convex functions.

4. f(x) = x(x−1)···(x−r+1)
r! is convex on r − 1 < x < ∞.

Solution: Forget about the r! factor. Think of f(x) as a product of r linear terms. Then by the
product rule, f ′ is the sum of r products, each consisting of r − 1 linear terms. For example, one of
the terms would be x(x− 1)(x− 3)(x− 4) · · · (x− r + 1); this corresponds to the x− 2 factor missing.
But then the second derivative f ′′ is a sum of even more products, but each product consists of r − 2
linear terms (with two factors missing). But for x > r, every factor is > 0, and we are taking a sum of
products of them, so f ′′ > 0.

2.2 Direct applications of Jensen

Now use direct applications of Jensen’s inequality to prove the following inequalities.

1. (India 1995, from Kiran) Let x1, . . . , xn be positive numbers summing to 1. Prove that

x1√
1− x1

+ · · ·+ xn√
1− xn

≥
√

n

n− 1
.

Solution: Done immediately by Jensen, just need to prove that x/
√

1− x is convex on the interval
0 < x < 1. Use the substitution t = 1− x, and prove convexity (on the same interval) of (1− t)/

√
t =

1/
√

t + (−
√

t). But this is the sum of two convex functions, hence convex!

2. (MMO† 1963) For a, b, c > 0, prove:

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

Solution: Homogeneous, so WLOG a + b + c = 1. Then LHS is sum over terms of the form
x/(1 − x) = −1 + 1/(1 − x), which is convex on 0 < x < 1. So by Jensen, it is ≥ the case when
everything is at the average 1/3. This gives 3/2.

†not the “Massively Multiplayer” Olympiad
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3. Let a, b, c be positive real numbers with a + b + c ≥ 1. Prove that

a2

b + c
+

b2

c + a
+

c2

a + b
≥ 1

2
.

Solution: Let S = a+b+c. Then the fractions are of the form x2

S−x , which is convex by the exercise

in the previous section. Hence LHS is ≥ 3 · (S/3)2

(2/3)S = S/2, and we assumed that S ≥ 1.

4. (Ireland 1998/7a) Prove for all positive real numbers a, b, c:

9
a + b + c

≤ 2
(

1
a + b

+
1

b + c
+

1
c + a

)
.

Solution: Use substitution S = a + b + c. WLOG, S = 1. Then we need convexity of 1/(1− x) on
(0, 1), which is clear.

2.3 Endpoints of convex functions

• If f(x) is convex on the interval a ≤ x ≤ b, then f(x) attains a maximum, and that value is either
f(a) or f(b).

• If f(x) is concave on the interval a ≤ x ≤ b, then f(x) attains a minimum, and that value is either
f(a) or f(b).

Now try these problems. Use the above facts to observe that it suffices to manually check just a few
possible such assignments. Finally, check those values!

1. (Bulgaria, 1995) Let n ≥ 2 and 0 ≤ xi ≤ 1 for all i = 1, 2, . . . , n. Show that

(x1 + x2 + · · ·+ xn)− (x1x2 + x2x3 + · · ·xnx1) ≤
⌊n

2

⌋
.

Bonus: determine when there is equality.

Solution: This is actually linear in each variable separately. Therefore, we can iteratively unsmooth
each variable to an endpoint {0, 1}. Rewrite LHS as

x1(1− x2) + x2(1− x3) + · · ·xn(1− x1).

With {0, 1}-assignments, each term is zero unless xi = 1 and xi+1 = 0, in which case the term is 1.
This is a “1, 0” pattern in consecutive variables when reading the xi cyclically. Clearly, the maximum
possible number of “1, 0” patterns is the claimed RHS.

2. (USAMO 1980/5) Show that for all real numbers 0 ≤ a, b, c ≤ 1,

a

b + c + 1
+

b

c + a + 1
+

c

a + b + 1
+ (1− a)(1− b)(1− c) ≤ 1.

Solution: Consider b, c as constant, and see what happens if we perturb a. Then, the LHS is a
convex function of a, because first term is linear, 2nd/3rd terms are of the form ·

x+· , and the third
term is a purely linear function of a. Hence LHS is maximized at one of the extreme values of a (either
0 or 1), so we may assume it is one of these. Similarly, b, c ∈ {0, 1}. This gives 8 assignmets of (a, b, c)
to check, and they all work.
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2.4 Smoothing and unsmoothing

Theorem. Let f(x) be convex on the interval I. Suppose a < b are both in I, and suppose ε > 0 is a real
number for which a + ε ≤ b− ε. Then f(a) + f(b) ≥ f(a + ε) + f(b− ε). If f is strictly convex, then the
inequality is strict.

This means that:

• For convex functions f , we can decrease the sum f(a) + f(b) by “smoothing” a and b together, and
increase the sum by “unsmoothing” a and b apart.

• For concave functions f , we can increase the sum f(a) + f(b) by “smoothing” a and b together, and
decrease the sum by “unsmoothing” a and b apart.

• In all of the above statements, if the convexity/concavity is strict, then the increasing/decreasing is
strict as well.

This “smoothing principle” gives another way to draw conclusions about the assignments to the variables
which bring the LHS and RHS closest together (i.e., sharpening the inequality). Hopefully, this process will
give us a simpler inequality to prove.

Warning. Be careful to ensure that your smoothing process terminates. For example, if we are trying
to prove that (a + b + c)/3 ≥ 3

√
abc for a, b, c ≥ 0, we can observe that if we smooth any pair of variables

together, then the LHS remains constant while the RHS increases. Therefore, a näıve smoothing procedure
would be:

As long as there are two unequal variables, smooth them both together into their arithmetic mean.
At the end, we will have a = b = c, and the RHS will be exactly equal to the LHS, so we are done.

Unfortunately, “the end” may take infinitely long to occur, if the initial values of a, b, c are unfavorable!
Instead, one could use a smoothing argument for which each iteration increases the number of a, b, c equal
to their arithmetic mean (a + b + c)/3.

Now try these problems.

1. (Zvezda 1998) Prove for all reals a, b, c ≥ 0:

(a + b + c)2

3
≥ a

√
bc + b

√
ca + c

√
ab.

Solution: If we smooth, say, a and b together, then LHS is invariant, and RHS is of the form
c
√

ab +
√

c
√

ab(
√

a +
√

b). But
√

ab will grow, as will
√

a +
√

b. Smooth until each element hits the
arithmetic mean. Therefore, RHS will grow, so we may assume that all are equal. This corresponds
to (3t)2/3 ≥ 3t2, which is indeed true.

3 Problems

Now you’re on your own. Use any method from this lecture to solve these problems.

1. Let m ≥ n be positive integers. Prove that every graph with m edges and n vertices has at least m2

n
“V-shapes,” which are defined to be unordered triples of vertices which have exactly two edges between
themselves.

Solution: The number is exactly
∑(

di

2

)
, where the di are the degrees. Average degree is 2m/n,

and
(
x
2

)
is convex, so Jensen implies that this is ≥ n

(
2m/n

2

)
≥ n(2m/n)(2m/n− 1)/2 ≥ m2/n.
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2. (Ireland 1998/7b) Prove that if a, b, c are positive real numbers, then

1
a + b

+
1

b + c
+

1
c + a

≤ 1
2

(
1
a

+
1
b

+
1
c

)
.

Solution: Jensen with f(t) = 1/t:

f(a) + f(b)
2

≥ f

(
a + b

2

)
.

3. (T. Mildorf’s Inequalities, problem 3) Let a1, . . . , an ≥ 0 be real numbers summing to 1. Prove that

a1a2 + a2a3 + · · ·+ an−1an ≤
1
4
.

Solution: Observe that if any of the ai are zero, then we could increase the LHS by deleting
the zero entries (thus reducing the value of n). For example, if n = 4 and the sequence of ai’s was
(0.5, 0, 0.4, 0.1), then the corresponding LHS with n = 3 and a sequence of (0.5, 0.4, 0.1) would be
higher. Therefore, we may assume that the sequence of ai has no zeros.

Next, consider unsmoothing the pair corresponding to a1 and a3. Observe that a1 is only multiplied
by a2, but a3 is multiplied by a2 + a4 > a2 if n ≥ 4, because we just showed all ai > 0. Therefore,
we may increase the LHS by pushing a1 all the way to zero, and giving its mass to a3. Repeat this
process (at most n < ∞ times) until n ≤ 3.

Finally, since we only have a1, a2, and a3 left, the LHS is simply equal to a2(a1 + a3) = a2(1 − a2)
because they sum to 1. Clearly, this has maximum value 1/4. (There are also two other cases which
correspond to ending up at n = 2 or n = 1, but those are trivial.)

4. (Hong Kong 2000) Let a1 ≤ · · · ≤ an be real numbers such that a1 + · · ·+ an = 0. Show that

a2
1 + · · ·+ a2

n + na1an ≤ 0.

Solution: If there are at least two intermediate ai, neither of which are equal to a1 or an, then
we can unsmooth them and increase LHS. So we may assume that there are x of the ai equal to some
a = a1, at most one of the ai equal to some b, and n− x or n− 1− x of the ai equal to some c.

Case 1 (when there is no b): using xa + (n − x)c = 0, we solve and get x = nc/(c − a). Then
xa2 + (n− x)c2 = −nac, exactly what we needed.

Case 2 (when there is one b): using xa+b+(n−1−x)c = 0, we solve and get x = [b+(n−1)c]/(c−a).
Then xa2+b2+(n−1−x)c2 = −(n−1)ac+b(−a−c)+b2. It suffices to show that b(−a−c)+b2 ≤ −ac. If
b ≥ 0, then use b ≤ c to get b2 ≤ bc, hence b(−a−c)+b2 ≤ −ab ≤ −ac, final inequality using that a ≤ 0
and b ≤ c. On the other hand, if b ≤ 0, then use b ≥ a to get b2 ≤ ab, hence b(−a−c)+b2 ≤ −bc ≤ −ac,
final inequality using that c ≥ 0 and b ≥ a.

5. (IMO 1984) For x, y, z > 0 and x + y + z = 1, prove that xy + yz + xz − 2xyz ≤ 7/27.

Solution: Smooth with the following expression: x(y + z) + yz(1 − 2x). Now, if x ≤ 1/2, then we
can push y and z together. The mushing algorithm is as follows: first, if there is one of them that is
greater than 1/2, pick any other one and mush the other two until all are within 1/2. Next we will
be allowed to mush with any variable taking the place of x. Pick the middle term to be x; then by
contradiction, the other two terms must be on opposite sides of 1/3. Hence we can mush to get one of
them to be 1/3. Finally, use the 1/3 for x and mush the other two into 1/3. Plugging in, we get 7/27.

6. (MOP 2008/6) Prove for real numbers x ≥ y ≥ 1:

x√
x + y

+
y√

y + 1
+

1√
x + 1

≥ y√
x + y

+
x√

x + 1
+

1√
y + 1

.
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7. (MOP Team Contest 2008) Let x1, x2, . . . , xn be positive real numbers with
∏

xi = 1. Prove:∑ 1
n− 1 + xi

≤ 1.

8. (MOP 1998/5/5) Let a1 ≥ · · · ≥ an ≥ an+1 = 0 be a sequence of real numbers. Prove that:√√√√ n∑
k=1

ak ≤
n∑

k=1

√
k(
√

ak −
√

ak+1).

Solution: Since the inequality is homogeneous, we can normalize the ak so that a1 = 1. (If they are
all zero, it is trivial anyway.) Now define the random variable X such that P (X ≥ k) =

√
ak. Then

STS √
E[min{X1, X2}] ≤ E[

√
X],

where X, X1, X2 are i.i.d. Prove by induction on n. Base case is if n = 1, trivial. Now if you go
to n + 1 by shifting q amount of probability from P (X = n) to P (X = n + 1), RHS will increase
by exactly q(

√
n + 1 −

√
n). Yet LHS increases by exactly q2 under the square root. Now since the

probability shifted from P (X = n), the square root was originally at least q2n. In the worst case, the
LHS increases by

√
q2n + q2 −

√
q2n, which equals the RHS increase.

A Compactness

Definition. Let f(x1, . . . , xt) be a function with domain D. We say that the function attains a maximum
on D at some assignment (xi) = (ci) if f(c1, . . . , ct) is greater than or equal to every other value f(x1, . . . , xt)
with (x1, . . . , xt) ∈ D.

Remark. Not every function has a maximum! Consider, for example, the function 1/x on the domain
0 < x < ∞, or even the function x on the domain 0 < x < 1.

Definition. Let D be a subset of Rn.

• If D “includes its boundary”, then we say that D is closed.

• If there is some finite radius r for which D is contained within the ball of radius r around the origin,
then we say that D is bounded.

• If D is both closed and bounded, then1 we say D is compact.

Theorem. Let f be a continuous function defined over a domain D which is compact. Then f attains a
maximum on D, and also attains a minimum on D.

1Strictly speaking, this is not the proper definition of “compactness,” but rather is a consequence of the Heine-Borel Theorem.
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