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Problem 1 (A.23) Let R be an infinite ring such that every subring of R

different from {0} has a finite index in R. (By the index of a subring, we
mean the index of its additive group in the additive group of R.) Prove that the
additive group of R is cyclic.

Solution:
Our goal will be to use the Fundamental Theorem of Finitely Generated

Abelian Groups, from which we conclude that the additive group of R (let us
call it A) is isomorphic to

�
n. Then we will use an idea similar to “logarithms”

to prove that it is really just
�

.
First, we will show that A is torsion free as an abelian group.

Lemma 1 A is torsion-free.

Proof of Lemma 1:
We proceed by indirect proof; suppose, for the sake of contradiction, that

there exist n ∈
�

and r ∈ R such that nr = 0. We can immediately proceed to
the case of n prime, because if n = pq for prime p, then we can just consider qr

instead of r. Let H = 〈r〉 and K = 〈r2〉. By the given information, it is obvious
that all subrings of the infinite R must likewise be infinite. We will demonstrate
that if nr is indeed zero, then H is finite.

Again we have |H : K| < ∞, so let us try to mine something out of the
coset structure. Concentrate on the cosets r+K, r3 +K, r5 +K, . . . (the cosets
corresponding to the odd powers of r). By finiteness, eventually they will repeat,
so we will have the form ra−rb ∈ K. Since the elements of K can be written as
finite polynomials in r2, by the oddity of a and b, we have a nonzero polynomial
f(x) ∈

�
[x] that evaluates to zero at r. But since n is a prime and nr = 0, we can

work with coefficients in the finite field
�

n; we find a corresponding polynomial
g(x) ∈

�
n[x] with the same property. Let cxd be its leading term. Since

�
n is

a field, we can normalize g(x) by multiplying it by c−1. This translates into a
relation xd = p(x) for some integral polynomial p(x) with degree less than d.
Then all elements of H corresponding to polynomials of degree at least d can
be reduced to polynomials of degree under d (replace xd terms by polynomials
of degree less than d); so the elements of H can be completely described by the
polynomials of finite degree less than d with coefficients in the finite field

�
n;
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this is a finite set, so |H | < ∞ and we have the contradiction predicted at the
beginning. Our lemma is proven.

Next we show that A is finitely generated.

Lemma 2 A is finitely generated.

Proof of Lemma 2:
Suppose that there exists a subring T ⊂ R such that its additive group

B is finitely generated by some set G. Now, from the given information, |A :
B| < ∞, so we have only finitely many cosets. Let C = {c1, c2, c3, . . . , ck} be
representatives from the cosets, and consider the set G ∪ C. This is a finite set,
and it generates R, so we only need to find a subring of R with finitely generated
additive group. We digress to prove an auxiliary lemma that will provide us
with such a subring.

Sublemma 1 For any r ∈ R, there exist n ∈
�

and p(x) ∈
�

[x], with the
constant term of p(x) equal to zero, such that nr = p(r). Here, we write nr with
n ∈

�
and r ∈ R to denote the summation of n copies of r. (If n is negative,

we add the appropriate number of copies of −r.

Proof of Sublemma 1:
Let subrings D and E be defined as follows: D = 〈r〉 and E = 0⊕ r

�
[r]. In

this definition, r
�

[r] refers to the evaluation at r of all polynomials with zero
constant term. Clearly, E ⊂ D, and since D ⊂ R, it follows that |D : E| < ∞.
Let us look at the cosets 0+E, r +E, 2r +E, 3r +E, . . . ; since we have a finite
index, the cosets must eventuall repeat, so there exist n ∈

�
such that nr ∈ E,

from which our claim is immediate.
Returning to the problem at hand, let us choose an arbitrary nonzero r ∈ R.

Applying the lemma, we find some corresponding polynomial p(x). Let d and
a be the respective degree and coefficient of the polynomial’s leading term; we
will be able to prove that 〈ar〉 works for B. This is because (ar)d = adrd =
ad−1(ard) = ad−1q(r) for some q ∈

�
[x], and since the degree of q(x) is less

than d, the final expression can be written as s(ar) for some s ∈
�

[x]. Since
all elements in 〈ar〉 can be expressed as finite integral polynomials in ar, any
such polynomial with degree d or higher can be re-expressed as a polynomial
of degree less than d by applying the relation (ar)d = s(ar). Therefore the
finite set {ar, (ar)2, (ar)3, . . . , (ar)n−1} generates 〈B〉, as desired. Our lemma
is proven.

At this point we can invoke the Fundamental Theorem of Finitely Generated
Abelian Groups: A ∼=

�
n. The remainder of this proof will show that n = 1.

Lemma 3 n = 1.

Proof of Lemma 3:
Suppose that the n generators of the free group A are {x1, x2, . . . , xn}. De-

fine the family of free subgroups Ak =
�

xk; as we go through the all the powers
of xi, we must enter all of the subgroups. That is, for each Ak, there exists some
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ak for which xak

i ∈ Ak. This is because if we did not enter some subgroup Am,
then for every z ∈

�
we have a distinct coset zam + 〈xi〉. But |R : 〈xi〉| < ∞, so

we have a contradiction. Therefore, we must enter every coset as we go through
the powers of xi. Let us go through the powers of x1 and see what happens.

Let S = {k ∈
�

+|xk
1 ∈ A1}. Clearly, if a, b ∈ S then a + (b− 1) ∈ S because

xa+b−1

1 = xa−1

1 xb
1 = xa

1 ∈ A1. Similarly, as long as a− (b−1) is positive, it must
also be in S. Therefore, since 1 ∈ S, if 2 ∈ S we will have S =

�
+ → n = 1.

This is our final sublemma.

Sublemma 2 2 ∈ S.

Proof of Sublemma 2:
Again proceed by indirect proof; assume for the sake of contradiction that

2 6∈ S. Let y be the smallest member of S other than 1. By the above result, S
must contain all positive integers congruent to 1 modulo y, and nothing more.
Define M = 〈x1〉 and N = 〈xy

1〉. Again |M : N | < ∞ so we can extract
information by looking at the family of cosets 0+N , x1 +N , 2x1 +N , 3x1 +N ,
. . . (this is infinite since R is torsion-free and these are distinct cosets because
S = {k ∈

�
+|k ≡ 1 (mod y)}). We discover that for some z ∈

�
, zx1 ∈ N ;

the elements of N can be expressed as polynomials in x
y
1 , so we find p(x1) ∈ A1

for some integral polynomial with all exponents divisible by y.
Write p(x1) as

∑
k ckx

yk
1 . By assumption y 6= 2, so none of the terms in

p(x1) are in A1. Therefore when we write p(x1) = zx1, we have a nontrivial
linear dependence relation between the basis elements of our free abelian group.
This is a contradiction, so y = 1 as required. Our sublemma is proven.

And we are done.
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