CHM: A.23

Po-Shen Loh

29 March 2001

Problem 1 (A.23) Let R be an infinite ring such that every subring of R different from $\{0\}$ has a finite index in R. (By the index of a subring, we mean the index of its additive group in the additive group of R.) Prove that the additive group of R is cyclic.

Solution:

Our goal will be to use the Fundamental Theorem of Finitely Generated Abelian Groups, from which we conclude that the additive group of R (let us call it A) is isomorphic to \mathbb{Z}^n . Then we will use an idea similar to "logarithms" to prove that it is really just \mathbb{Z} .

First, we will show that A is torsion free as an abelian group.

Lemma 1 A is torsion-free.

Proof of Lemma 1:

We proceed by indirect proof; suppose, for the sake of contradiction, that there exist $n \in \mathbb{Z}$ and $r \in R$ such that nr = 0. We can immediately proceed to the case of n prime, because if n = pq for prime p, then we can just consider qrinstead of r. Let $H = \langle r \rangle$ and $K = \langle r^2 \rangle$. By the given information, it is obvious that all subrings of the infinite R must likewise be infinite. We will demonstrate that if nr is indeed zero, then H is finite.

Again we have $|H : K| < \infty$, so let us try to mine something out of the coset structure. Concentrate on the cosets r + K, $r^3 + K$, $r^5 + K$, ... (the cosets corresponding to the odd powers of r). By finiteness, eventually they will repeat, so we will have the form $r^a - r^b \in K$. Since the elements of K can be written as finite polynomials in r^2 , by the oddity of a and b, we have a nonzero polynomial $f(x) \in \mathbb{Z}[x]$ that evaluates to zero at r. But since n is a prime and nr = 0, we can work with coefficients in the finite field \mathbb{Z}_n ; we find a corresponding polynomial $g(x) \in \mathbb{Z}_n[x]$ with the same property. Let cx^d be its leading term. Since \mathbb{Z}_n is a field, we can normalize g(x) by multiplying it by c^{-1} . This translates into a relation $x^d = p(x)$ for some integral polynomial p(x) with degree less than d. Then all elements of H corresponding to polynomials of degree at least d can be reduced to polynomials of degree under d (replace x^d terms by polynomials of degree less than d); so the elements of H conficients in the finite field \mathbb{Z}_n ;

this is a finite set, so $|H| < \infty$ and we have the contradiction predicted at the beginning. Our lemma is proven.

Next we show that A is finitely generated.

Lemma 2 A is finitely generated.

Proof of Lemma 2:

Suppose that there exists a subring $T \subset R$ such that its additive group B is finitely generated by some set \mathcal{G} . Now, from the given information, $|A : B| < \infty$, so we have only finitely many cosets. Let $\mathcal{C} = \{c_1, c_2, c_3, \ldots, c_k\}$ be representatives from the cosets, and consider the set $\mathcal{G} \cup \mathcal{C}$. This is a finite set, and it generates R, so we only need to find a subring of R with finitely generated additive group. We digress to prove an auxiliary lemma that will provide us with such a subring.

Sublemma 1 For any $r \in R$, there exist $n \in \mathbb{Z}$ and $p(x) \in \mathbb{Z}[x]$, with the constant term of p(x) equal to zero, such that nr = p(r). Here, we write nr with $n \in \mathbb{Z}$ and $r \in R$ to denote the summation of n copies of r. (If n is negative, we add the appropriate number of copies of -r.

Proof of Sublemma 1:

Let subrings D and E be defined as follows: $D = \langle r \rangle$ and $E = 0 \oplus r\mathbb{Z}[r]$. In this definition, $r\mathbb{Z}[r]$ refers to the evaluation at r of all polynomials with zero constant term. Clearly, $E \subset D$, and since $D \subset R$, it follows that $|D:E| < \infty$. Let us look at the cosets 0 + E, r + E, 2r + E, 3r + E, ...; since we have a finite index, the cosets must eventual repeat, so there exist $n \in \mathbb{Z}$ such that $nr \in E$, from which our claim is immediate.

Returning to the problem at hand, let us choose an arbitrary nonzero $r \in R$. Applying the lemma, we find some corresponding polynomial p(x). Let d and a be the respective degree and coefficient of the polynomial's leading term; we will be able to prove that $\langle ar \rangle$ works for B. This is because $(ar)^d = a^d r^d = a^{d-1}(ar^d) = a^{d-1}q(r)$ for some $q \in \mathbb{Z}[x]$, and since the degree of q(x) is less than d, the final expression can be written as s(ar) for some $s \in \mathbb{Z}[x]$. Since all elements in $\langle ar \rangle$ can be expressed as finite integral polynomials in ar, any such polynomial with degree d or higher can be re-expressed as a polynomial of degree less than d by applying the relation $(ar)^d = s(ar)$. Therefore the finite set $\{ar, (ar)^2, (ar)^3, \ldots, (ar)^{n-1}\}$ generates $\langle B \rangle$, as desired. Our lemma is proven.

At this point we can invoke the Fundamental Theorem of Finitely Generated Abelian Groups: $A \cong \mathbb{Z}^n$. The remainder of this proof will show that n = 1.

Lemma 3 n = 1.

Proof of Lemma 3:

Suppose that the *n* generators of the free group *A* are $\{x_1, x_2, \ldots, x_n\}$. Define the family of free subgroups $A_k = \mathbb{Z}x_k$; as we go through the all the powers of x_i , we must enter all of the subgroups. That is, for each A_k , there exists some

 a_k for which $x_i^{a_k} \in A_k$. This is because if we did not enter some subgroup A_m , then for every $z \in \mathbb{Z}$ we have a distinct coset $za_m + \langle x_i \rangle$. But $|R : \langle x_i \rangle| < \infty$, so we have a contradiction. Therefore, we must enter every coset as we go through the powers of x_i . Let us go through the powers of x_1 and see what happens.

Let $S = \{k \in \mathbb{Z}^+ | x_1^k \in A_1\}$. Clearly, if $a, b \in S$ then $a + (b-1) \in S$ because $x_1^{a+b-1} = x_1^{a-1}x_1^b = x_1^a \in A_1$. Similarly, as long as a - (b-1) is positive, it must also be in S. Therefore, since $1 \in S$, if $2 \in S$ we will have $S = \mathbb{Z}^+ \to n = 1$. This is our final sublemma.

Sublemma 2 $2 \in S$.

Proof of Sublemma 2:

Again proceed by indirect proof; assume for the sake of contradiction that $2 \notin S$. Let y be the smallest member of S other than 1. By the above result, S must contain all positive integers congruent to 1 modulo y, and nothing more. Define $M = \langle x_1 \rangle$ and $N = \langle x_1^y \rangle$. Again $|M : N| < \infty$ so we can extract information by looking at the family of cosets 0 + N, $x_1 + N$, $2x_1 + N$, $3x_1 + N$, ... (this is infinite since R is torsion-free and these are distinct cosets because $S = \{k \in \mathbb{Z}^+ | k \equiv 1 \pmod{y}\}$). We discover that for some $z \in \mathbb{Z}$, $zx_1 \in N$; the elements of N can be expressed as polynomials in x_1^y , so we find $p(x_1) \in A_1$ for some integral polynomial with all exponents divisible by y.

for some integral polynomial with all exponents divisible by y. Write $p(x_1)$ as $\sum_k c_k x_1^{yk}$. By assumption $y \neq 2$, so none of the terms in $p(x_1)$ are in A_1 . Therefore when we write $p(x_1) = zx_1$, we have a nontrivial linear dependence relation between the basis elements of our free abelian group. This is a contradiction, so y = 1 as required. Our sublemma is proven.

And we are done.