Brutal Force

Po - MOP '98

This is probably going to be my final lecture at MOP (giving or receiving), so here's what I'm leaving for the rest of you.

I'm showing how to use brutal force to solve geometry problems. Brutal force is just what I'm calling my method of twisting/smushing because hey, twisting/smuching a diagram is exerting brutal force on it.

Now that my neat little introduction is over, let's get to the point. What exactly is this brutal force and how do I use it?

There are many ways to deform a diagram. Here are the basic tools:
Reflection This is one of the most basic operations. It involves finding a line in the plane and reflecting [part] of the problem around it, possibly superimposing the two images. (Duh)

Rotation This is another basic operation. Very useful in circles (for the obvious reasons).
Homothety I hope you know what this is. This is fun because stuff stays similar and that's cool.
Spiral Similarilty This is a useful tool later, when we do much more drastic stuff. But what it really does is rotate something, and then homothety it around somewhere.

All right! Now that you know that, let's find out how to do some more advanced stuff.
Look for spinning stuff In a picture, sometimes there's a hidden spirally-similar figure. Look closely, and you may be able to rotate/homothety/spiral-similar something.
Stretch Here we go. This is more interesting. Stretching stuff is (kinda) like homothety-ing something in one dimension. A nice fact is that stuff always travels in one direction, emabling you to do lots of cool stuff. Important: everything moves by the same ratio.

Twist This involves moving a part of the diagram along an arc of a circle. The neat thing that it does is preserve angles.
Pull This involves moving one part of the diagram along a ray, and then adjusting the rest of the picture to abide by that deformation.

Those usually work. But by far the most fun operations to perform are the things that generalize facts.
"Induction" on geometrical figures This is the coolest (and also the most difficult) algorithm to perform on a picture. What you do is:

1. Find an easy (usually symmetric) case for the problem. For example, if the problem is about a triangle, show that it's true for an isosceles triangle. This is the base case.
2. Find a line/point/circle that the entire problem depends on. Treat the problem as a function: the input is the position of that crucial line/point/circle and the output is the status of the problem (T/F ... hopefully it's true).
3. Stretch/Twist/Pull that crucial element by an incremental amount (ϵ, θ, d, etc.).
4. Superimpose the original and deformed figures (use at least two colors!).
5. Assuming the base case, show that the problem is still true for this deformed figure.
6. By Po's Geometrical Induction Theorem (also the If you can't see this you don't deserve to be reading this Theorem), the problem is universally true.

Now that you've got the tools, let's solve some problems!

1. (MOP Test $\# 3$, Problem $\# 3$) Let $\triangle A B C$ be inscribed in circle O. Let X be the intersection of $B O$ and circle O. Let Y be the midpoint of $A C$. Choose an arbitrary D on arc $A C$. Construct equilateral triangles $C D F$ and $A D E$ outwards. Let M be the midpoint of $E F$. Prove that $X Y=X M$.
2. (Razvan, $6 / 19$, Quadrilaterals $\# 6$) Prove that if in a convex quadrilateral two opposite angles are congruent, the bisectors of the other two angles are parallel.
3. (Rasvan, $6 / 19$, Quadrilaterals $\# 13$) Prove that the interior bisectors of the angles of a parallelogram form a rectangle whose diagonals are parallel to the sides of the parallelogram.
4. (Elgin, $6 / 30$, Complex Numbers \#4) Let A, B, C be distinct points on a line and α be a given angle with $0<\alpha<180$. Isosceles triangles $A B X$ and $B C Y$, with $A X=B X, C Y=B Y$ and angle $A X B=\alpha=$ angle $B Y C$ are drawn so that their cyclic orientations $A-B-X$ and $B-C-Y$ are both counterclockwise. Then isosceles triangle $X Y Z$ is drawn with $X Z=Y Z$, angle $X Z Y=\alpha$, and clockwise orientation $X-Y-Z$. Prove that Z is on the line containing A, B, and C.
5. (MOP Test $\# 9$, Problem \#5) Given a triangle $A B C$, construct the circle with diameter $A B$. Let the circle intersect $A C$ and $B C$ in D and E. Let the feet of the perpendiculars from D and E to $A B$ be F and G. Let the intersection of $D G$ and $E F$ be M. Prove that $C M$ is perpendicular to $A B$.
6. (Rookie Contest, Po's Star Theorem) Given two congruent circles, ω_{1} and ω_{2}. Let them intersect at B and C. Select a point A on ω_{1}. Let $A B$ and $A C$ intersect ω_{2} at A_{1} and A_{2}. Let X be the midpoint of $B C$. Let $A_{1} X$ and $A_{2} X$ intersect ω_{1} at P_{1} and P_{2}. Prove that $A P_{1}=A P_{2}$.
7. (Razvan, $6 / 11$, Triangles $\# 3$) In the triangle $A B C$ we consider the bisector $A A^{\prime}$. The circumcircles of the triangles $A B A^{\prime}$ and $A C A^{\prime}$ intersect $A C$ and $A B$ in M and N. Prove that $|B N|=|C M|$.
8. (Po, random problem) Let us have three concurrent circles ω_{1}, ω_{2}, and ω_{3}. Let the point of concurrence be P. Let the intersection of ω_{1} and ω_{2} be A, the intersection of ω_{2} and ω_{3} be B, and the other intersection be C. Select a point X on ω_{1}. Let the intersection of $X A$ and ω_{2} be Y. Let the intersection of $Y B$ and $X C$ be Z. Prove that:
(a) Z lies on ω_{3}.
(b) $X Y / X Z$ is a constant.
9. (IMO Test $\# 3$, Problem \#3) Let circle ω_{1}, centered at O_{1}, and circle ω_{2}, centered at O_{2}, meet at A and B. Let l be a line through A meeting ω_{1} again at Y and meeting ω_{2} again at Z. Let X be the intersection of the tangent to ω_{1} at Y and the tangent to ω_{2} at Z. Let ω be the circumcircle of $O_{1} O_{2} B$, and let Q be the second intersection of ω with $B X$. Prove that the length of $X Q$ equals the diameter of ω.
10. (APMO '98, Problem \#4) Let $A B C$ be a triangle and D the foot of the altitude from A. Let E and F be on a line passing through D such that $A E$ is perpendicular to $B E, A F$ is perpendicular to $C F$, and E and F are different from D. Let M and N be the midpoints of the line segments $B C$ and $E F$, respectively. Prove that $A N$ is perpendicular to $N M$.
11. (Lots of other problems) Go look up any geometry problem and try to induct it.
