Limits by Equation!

Po-Shen Loh

11 March 2001

Consider the following limit; we shall solve it without resorting to L'Hopital's rule or power series.

$$
\lim _{\theta \rightarrow 0} \frac{\theta-\sin \theta}{\theta^{3}}
$$

To solve this limit, we use equations:

$$
\begin{aligned}
X & =\lim _{\theta \rightarrow 0} \frac{\theta-\sin \theta}{\theta^{3}} \\
& =\lim _{\theta \rightarrow 0} \frac{2(\theta / 2)-2 \sin (\theta / 2) \cos (\theta / 2)}{\theta^{3}} \\
& =\lim _{\theta \rightarrow 0} \frac{2(\theta / 2)-2 \sin (\theta / 2)\left(1-2 \sin ^{2}(\theta / 4)\right)}{\theta^{3}} \\
& =\lim _{\theta \rightarrow 0} \frac{2(\theta / 2)-2 \sin (\theta / 2)}{\theta^{3}}+\lim _{\theta \rightarrow 0} \frac{4 \sin (\theta / 2) \sin ^{2}(\theta / 4)}{\theta^{3}} \\
& =X / 4+1 / 8 \\
\frac{3}{4} X & =\frac{1}{8} \\
X & =1 / 6 .
\end{aligned}
$$

And we are done.

