Putnam $\Sigma.11$

Po-Shen Loh

10 November 2024

1 Problems

Putnam 2013/A4. A finite collection of digits 0 and 1 is written around a circle. An *arc* of length $L \ge 0$ consists of L consecutive digits around the circle. For each arc w, let Z(w) and N(w) denote the number of 0's in w and the number of 1's in w, respectively. Assume that $|Z(w) - Z(w')| \le 1$ for any two arcs w, w' of the same length. Suppose that some arcs w_1, \ldots, w_k have the property that

$$Z = \frac{1}{k} \sum_{j=1}^{k} Z(w_j)$$
 and $N = \frac{1}{k} \sum_{j=1}^{k} N(w_j)$

are both integers. Prove that there exists an arc w with Z(w) = Z and N(w) = N.

Putnam 2013/A5. For $m \geq 3$, a list of $\binom{m}{3}$ real numbers a_{ijk} $(1 \leq i < j < k \leq m)$ is said to be area definite for \mathbb{R}^n if the inequality

$$\sum_{1 \le i < j < k \le m} a_{ijk} \cdot \text{Area}(\Delta A_i A_j A_k) \ge 0$$

holds for every choice of m points A_1, \ldots, A_m in \mathbb{R}^n . For example, the list of four numbers $a_{123} = a_{124} = a_{134} = 1$, $a_{234} = -1$ is area definite for \mathbb{R}^2 . Prove that if a list of $\binom{m}{3}$ numbers is area definite for \mathbb{R}^3 .

Putnam 2013/A6. Define a function $w: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ as follows. For $|a|, |b| \leq 2$, let w(a, b) be as in the table shown; otherwise, let w(a, b) = 0.

	w(a,b)		b				
			-2	-1	0	1	2
		-2	-1	-2	2	-2	-1
		-1	-2	4	-4	4	-2
	a	0	2	-4	12	-4	2
		1	-2	4	-4	4	-2
		2	-1	-2	2	-2	-1

For every finite subset S of $\mathbb{Z} \times \mathbb{Z}$, define

$$A(S) = \sum_{(\mathbf{s}, \mathbf{s}') \in S \times S} w(\mathbf{s} - \mathbf{s}').$$

Prove that if S is any finite nonempty subset of $\mathbb{Z} \times \mathbb{Z}$, then A(S) > 0. (For example, if $S = \{(0,1),(0,2),(2,0),(3,1)\}$, then the terms in A(S) are 12,12,12,12,4,4,0,0,0,0,-1,-1,-2,-2,-4,-4.)