11. Integer polynomials

Po-Shen Loh

CMU Putnam Seminar, Fall 2024

1 Classical results

Vandermonde determinant. Let a_0, a_1, \ldots, a_n be distinct numbers, and let b_0, b_1, \ldots, b_n be arbitrary (possibly equal to each other or to any of the a_i). Then there is a unique polynomial $p(x) = c_n x^n + \cdots + c_0$ such that $p(a_i) = b_i$ for all $0 \le i \le n$.

Lagrange interpolation. An expression for the above polynomial is

$$p(x) = \sum_{i=0}^{n} \frac{b_i}{\prod_{j \neq i} (a_i - a_j)} \prod_{j \neq i} (x - a_j)$$

- Fermat's Last Theorem. The equation $x^n + y^n = z^n$ has no positive integer solutions (x, y, z, n) with $n \ge 3$.
- **Eisenstein's Criterion.** Suppose that the polynomial $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ has integer coefficients, and there is a prime number p such that p divides all of $a_0, a_1, \ldots, a_{n-1}, p$ does not divide a_n , and p^2 does not divide a_0 . Then the polynomial is irreducible over the rational numbers.

2 Problems

- 1. Let p(x) be the polynomial (x a)(x b)(x c)(x d). Assume p(x) = 0 has four distinct integral roots and that p(x) = 4 has an integral root k. Show that k is the mean of a, b, c, d.
- 2. Let p(x) be a polynomial with integer coefficients. Suppose that for some positive integer c, none of $p(1), p(2), \ldots, p(c)$ are divisible by c. Prove that p(b) is not zero for any integer b.
- 3. Let p(x) be a polynomial with the property that for every $z \in \mathbb{Z}^+$, p(z) is an integer. Prove that for every $z \in \mathbb{Z}$, p(z) is an integer.
- 4. Let p(x) be a real polynomial of degree n such that p(m) is integral for all integers m. Show that if k is a coefficient of p(x), then n!k is an integer.
- 5. Suppose that polynomial P(x) has the property that the set

$$\{P(x): x \in \mathbb{Q}\}$$

includes all rational numbers. Prove that P has degree 1.

- 6. Find all rational triples (a, b, c) for which a, b, c are the roots of $x^3 + ax^2 + bx + c = 0$.
- 7. For what positive integers n does the polynomial $p(x) = x^n + (2+x)^n + (2-x)^n$ have a rational root?
- 8. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$, and suppose that each a_n is 0 or 1.

- (1) Show that if f(1/2) is rational, then f(x) has the form p(x)/q(x) for some integer polynomials p(x) and q(x).
- (2) Show that if f(1/2) is not rational, then f(x) does not have the form p(x)/q(x) for any integer polynomials p(x) and q(x).
- 9. Let n be a nonzero integer. Prove that $n^4 7n^2 + 1$ can never be a perfect square.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.