Putnam 5.8

Po-Shen Loh

23 October 2022

1 Problems

Putnam 2009/B4. Say that a polynomial with real coefficients in two variables, x, y, is balanced if the average value of the polynomial on each circle centered at the origin is 0 . The balanced polynomials of degree at most 2009 form a vector space V over \mathbb{R}. Find the dimension of V.

Putnam 2009/B5. Let $f:(1, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that

$$
f^{\prime}(x)=\frac{x^{2}-f(x)^{2}}{x^{2}\left(f(x)^{2}+1\right)} \quad \text { for all } x>1
$$

Prove that $\lim _{x \rightarrow \infty} f(x)=\infty$.
Putnam 2009/B6. Prove that for every positive integer n, there is a sequence of integers $a_{0}, a_{1}, \ldots, a_{2009}$ with $a_{0}=0$ and $a_{2009}=n$ such that each term after a_{0} is either an earlier term plus 2^{k} for some nonnegative integer k, or of the form $b \bmod c$ for some earlier positive terms b and c. [Here $b \bmod c$ denotes the remainder when b is divided by c, so $0 \leq(b \bmod c)<c$.]

