Putnam 5.7

Po-Shen Loh

9 October 2022

1 Problems

Putnam 2008/A4. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x & \text { if } x \leq e \\ x f(\ln x) & \text { if } x>e\end{cases}
$$

Does $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ converge?
Putnam 2008/A5. Let $n \geq 3$ be an integer. Let $f(x)$ and $g(x)$ be polynomials with real coefficients such that the points $(f(1), \bar{g}(1)),(f(2), g(2)), \ldots,(f(n), g(n))$ in \mathbb{R}^{2} are the vertices of a regular n-gon in counterclockwise order. Prove that at least one of $f(x)$ and $g(x)$ has degree greater than or equal to $n-1$.

Putnam 2008/A6. Prove that there exists a constant $c>0$ such that in every nontrivial finite group G there exists a sequence of length at most $c \ln |G|$ with the property that each element of G equals the product of some subsequence. (The elements of G in the sequence are not required to be distinct. A subsequence of a sequence is obtained by selecting some of the terms, not necessarily consecutive, without reordering them; for example, $4,4,2$ is a subsequence of $2,4,6,4,2$, but $2,2,4$ is not.)

