Putnam 5.6

Po-Shen Loh

2 October 2022

1 Problems

Putnam 2007/B4. Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that

$$
(P(X))^{2}+(Q(X))^{2}=X^{2 n}+1
$$

and $\operatorname{deg} P>\operatorname{deg} Q$.
Putnam 2007/B5. Let k be a positive integer. Prove that there exist polynomials $P_{0}(n), P_{1}(n), \ldots, P_{k-1}(n)$ (which may depend on k) such that for any integer n,

$$
\left\lfloor\frac{n}{k}\right\rfloor^{k}=P_{0}(n)+P_{1}(n)\left\lfloor\frac{n}{k}\right\rfloor+\cdots+P_{k-1}(n)\left\lfloor\frac{n}{k}\right\rfloor^{k-1} .
$$

$(\lfloor a\rfloor$ means the largest integer $\leq a$.
Putnam 2007/B6. For each positive integer n, let $f(n)$ be the number of ways to make $n!$ cents using an unordered collection of coins, each worth $k!$ cents for some $k, 1 \leq k \leq n$. Prove that for some constant C, independent of n,

$$
n^{n^{2} / 2-C n} e^{-n^{2} / 4} \leq f(n) \leq n^{n^{2} / 2+C n} e^{-n^{2} / 4}
$$

