Putnam 5.4

Po-Shen Loh

18 September 2022

1 Problems

Putnam 2006/B4. Let Z denote the set of points in \mathbb{R}^{n} whose coordinates are 0 or 1 . (Thus Z has 2^{n} elements, which are the vertices of a unit hypercube in \mathbb{R}^{n}.) Let k be given, $0 \leq k \leq n$. Find the maximum, over all vector subspaces $V \subseteq \mathbb{R}^{n}$ of dimension k, of the number of points in $V \cap Z$.

Putnam 2006/B5. For each continuous function $f:[0,1] \rightarrow \mathbb{R}$, let $I(f)=\int_{0}^{1} x^{2} f(x) d x$ and $J(x)=$ $\int_{0}^{1} x(f(x))^{2} d x$. Find the maximum value of $I(f)-J(f)$ over all such functions f.

Putnam 2006/B6. Let k be an integer greater than 1. Suppose $a_{0}>0$, and define

$$
a_{n+1}=a_{n}+\frac{1}{\sqrt[k]{a_{n}}}
$$

for $n>0$. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{a_{n}^{k+1}}{n^{k}}
$$

