# Putnam 5. 3 

Po-Shen Loh

11 September 2022

## 1 Problems

Putnam 2006/A4. Let $S=\{1,2, \ldots, n\}$ for some integer $n>1$. Say a permutation $\pi$ of $S$ has a local maximum at $k \in S$ if
(i) $\pi(k)>\pi(k+1)$ for $k=1$;
(ii) $\pi(k-1)<\pi(k)$ and $\pi(k)>\pi(k+1)$ for $1<k<n$;
(iii) $\pi(k-1)<\pi(k)$ for $k=n$.
(For example, if $n=5$ and $\pi$ takes values at $1,2,3,4,5$ of $2,1,4,5,3$, then $\pi$ has a local maximum of 2 at $k=1$, and a local maximum of 5 at $k=4$.) What is the average number of local maxima of a permutation of $S$, averaging over all permutations of $S$ ?

Putnam 2006/A5. Let $n$ be a positive odd integer and let $\theta$ be a real number such that $\theta / \pi$ is irrational. Set $a_{k}=\tan (\theta+k \pi / n), k=1,2, \ldots, n$. Prove that

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{a_{1} a_{2} \cdots a_{n}}
$$

is an integer, and determine its value.
Putnam 2006/A6. Four points are chosen uniformly and independently at random in the interior of a given circle. Find the probability that they are the vertices of a convex quadrilateral.

