Putnam E. 7

Po-Shen Loh

11 October 2022

1 Problems

Putnam 2002/A1. Let k be a fixed positive integer. The n-th derivative of $\frac{1}{x^{k}-1}$ has the form $\frac{P_{n}(x)}{\left(x^{k}-1\right)^{n+1}}$ where $P_{n}(x)$ is a polynomial. Find $P_{n}(1)$.

Putnam 2002/A2. Given any five points on a sphere, show that some four of them must lie on a closed hemisphere.

Putnam 2002/A3. Let $n \geq 2$ be an integer and T_{n} be the number of non-empty subsets S of $\{1,2,3, \ldots, n\}$ with the property that the average of the elements of S is an integer. Prove that $T_{n}-n$ is always even.

