Putnam E. 4

Po-Shen Loh

20 September 2022

1 Problems

Putnam 2004/B1. Let $P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}$ be a polynomial with integer coefficients. Suppose that r is a rational number such that $P(r)=0$. Show that the n numbers

$$
\begin{gathered}
c_{n} r, c_{n} r^{2}+c_{n-1} r, c_{n} r^{3}+c_{n-1} r^{2}+c_{n-2} r \\
\ldots, c_{n} r^{n}+c_{n-1} r^{n-1}+\cdots+c_{1} r
\end{gathered}
$$

are integers.
Putnam 2004/B2. Let m and n be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}}<\frac{m!}{m^{m}} \frac{n!}{n^{n}}
$$

Putnam 2004/B3. Determine all real numbers $a>0$ for which there exists a nonnegative continuous function $f(x)$ defined on $[0, a]$ with the property that the region

$$
R=\{(x, y) ; 0 \leq x \leq a, 0 \leq y \leq f(x)\}
$$

has perimeter k units and area k square units for some real number k.

