11. Integer Polynomials

Po-Shen Loh

CMU Putnam Seminar, Fall 2022

1 Problems and well-known statements

1. (Goldbach.) Prove that there is no polynomial $P(x)$ with integer coefficients and degree at least 1 , such that $P(0), P(1), P(2), \ldots$ are all prime.
2. If P is a polynomial with integer coefficients, and a and b are distinct integers, then $P(a)-P(b)$ is divisible by $a-b$.
3. Let $P(x)$ be a polynomial such that $P(n)$ is an integer for every integer n. (Note that the coefficients of P are not necessarily integers themselves.) Prove that there are some integers c_{0}, \ldots, c_{n} for which

$$
P(x)=c_{0}\binom{x}{0}+c_{1}\binom{x}{1}+\cdots+c_{n}\binom{x}{n}
$$

where $\binom{x}{k}$ is defined for all real x to be $\frac{1}{k!} x(x-1)(x-2) \cdots(x-k+1)$.
4. I'm thinking of a polynomial P with nonnegative integer coefficients. As many times as you wish, you're allowed to give me a real number a, and I will evaluate $P(a)$ and tell you the result. Can you figure out what P is (as a polynomial), and if so, how few guesses can you achieve this in?
5. Let a, b, c be three distinct integers, and let P be a polynomial with integer coefficients. Show that the conditions $P(a)=b, P(b)=c$, and $P(c)=a$ cannot be satisfied simultaneously.
6. Let $P(x)$ be a polynomial with integer coefficients. Prove that if $P(P(\cdots P(x) \cdots))=x$ for some integer x, where P is repeated n times, then $P(P(x))=x$.
7. Let $P(z)=a z^{4}+b z^{3}+c z^{2}+d z+e=a\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)$, where a, b, c, d, e are integers and $a \neq 0$. Show that if $r_{1}+r_{2}$ is a rational number, and if $r_{1}+r_{2} \neq r_{3}+r_{4}$, then $r_{1} r_{2}$ is also rational.
8. What is the lowest degree monic polynomial (i.e., with leading coefficient equal to 1) for which $P(n) \equiv 0$ $(\bmod 100)$ for every integer n ?
9. Let $p(x)=x^{3}+a x^{2}+b x-1$ and $q(x)=x^{3}+c x^{2}+d x+1$ be polynomials with integer coefficients. Suppose that $p(x)$ is irreducible over the rationals, and α is a root of $p(x)=0$, and $\alpha+1$ is a root of $q(x)=0$. Find an expression for another root of $p(x)=0$ in terms of α, but not involving a, b, c, or d.
10. Let α be a complex $\left(2^{n}+1\right)$-th root of unity. Prove that there always exist polynomials $p(x)$ and $q(x)$ with integer coefficients, such that

$$
p(\alpha)^{2}+q(\alpha)^{2}=-1
$$

11. Let n be a positive odd integer and let θ be a real number such that θ / π is irrational. Set $a_{k}=$ $\tan (\theta+k \pi / n), k=1,2, \ldots, n$. Prove that

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{a_{1} a_{2} \cdots a_{n}}
$$

is an integer, and determine its value.

2 Homework

Please write up solutions to two of the statements/problems, to turn in at next week's meeting. One of them may be a problem that we solved in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

