# 9. Linear Algebra 

Po-Shen Loh

## CMU Putnam Seminar, Fall 2022

## 1 Well-known statements

Integer matrices. A square matrix with all-integer entries has inverse consisting of all-integer entries if and only if its determinant is $\pm 1$.

Area. If a triangle in the plane has coordinates $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$, then its area is the absolute value of:

$$
\frac{1}{2} \cdot \operatorname{det}\left(\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right)
$$

Spectral mapping theorem. If an $n \times n$ square matrix $A$ has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (possibly with multiplicity), and $P(x)$ is a polynomial, then the eigenvalues of the matrix $P(A)$ are $P\left(\lambda_{1}\right), \ldots, P\left(\lambda_{n}\right)$.

Commuting, sort of. For an $n \times n$ matrix $A$, let $\phi_{k}(A)$ denote the degree- $k$ symmetric polynomial in the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of $A$ :

$$
\phi_{k}(A)=\sum_{i_{1}, i_{2}, \ldots, i_{k}} \lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{k}}
$$

For example, $\phi_{1}(A)$ is the trace of $A$, and $\phi_{n}(A)$ is the determinant of $A$. Prove that for every $1 \leq k \leq n$, and every pair of $n \times n$ matrices $A$ and $B$,

$$
\phi_{k}(A B)=\phi_{k}(B A)
$$

## 2 Problems

1. For any $n \times n$ matrix $A$ with real entries,

$$
\operatorname{det}\left(I_{n}+A^{2}\right) \geq 0
$$

2. Let $A, B$, and $D$ be $n \times n$ matrices. Prove that

$$
\operatorname{det}\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right)=\operatorname{det}(A D)
$$

3. Let $A, B, C$, and $D$ be $n \times n$ matrices such that $A C=C A$. Prove that

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{det}(A D-C B)
$$

4. Let $X$ and $Y$ be $n \times n$ matrices, and let $I_{n}$ be the $n \times n$ identity matrix. Prove that

$$
\operatorname{det}\left(I_{n}-X Y\right)=\operatorname{det}\left(I_{n}-Y X\right)
$$

5. There are given $2 n+1$ real numbers, $n \geq 1$, with the property that whenever one of them is removed, the remaining $2 n$ can be split into two sets of $n$ elements that have the same sum of elements. Prove that all the numbers are equal.
6. Let $A$ be an $n \times n$ matrices such that $a_{i j}$ is the entry in the $i$-th row and $j$-th column. Suppose that for every row $i, \sum_{j=1}^{n}\left|a_{i j}\right|<1$. Prove that $I_{n}-A$ is invertible.
7. Let $A$ be an $n \times n$ matrix. Prove that there exists an $n \times n$ matrix $B$ such that $A B A=A$.
8. Let $k<n$ be two positive integers. Compute:
9. Given distinct integers $x_{1}, x_{2}, \ldots x_{n}$, prove that $\prod_{i<j}\left(x_{i}-x_{j}\right)$ is divisible by $1!2!\cdots(n-1)$ !.

## 3 Homework

Please write up solutions to two of the statements/problems, to turn in at next week's meeting. One of them may be a problem that we solved in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

