8. Recursions

Po-Shen Loh

CMU Putnam Seminar, Fall 2022

1 Well-known statements

Fibonacci. The Fibonacci sequence is defined by $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$. The $(n+1)$-st Fibonacci number F_{n+1} equals the number of ways to tile a $1 \times n$ board with 1×1 squares and 1×2 dominoes.

Cassini. The Fibonacci numbers satisfy

$$
F_{n-1} F_{n+1}-F_{n}^{2}=(-1)^{n} .
$$

$1 / 89$. What's going on?

$$
\frac{1}{89}=0.01123595595 \ldots
$$

2 Problems

1. Let $x_{0}=1$, and for each $n \geq 0$, let $x_{n+1}=x_{n}+\frac{1}{x_{n}}$. Prove that $x_{n} \rightarrow \infty$.
2. A sequence $\left(a_{n}\right)$ is defined by $a_{0}=-1, a_{1}=0$, and

$$
a_{n+1}=a_{n}^{2}-(n+1)^{2} a_{n-1}-1
$$

for all positive integers n. Find a_{100}.
3. The Fibonacci numbers satisfy $F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}$.
4. How many sequences of 1 's and 3 's sum to 16 ? (Examples of such sequences are $\{1,3,3,3,3,3\}$ and $\{1,3,1,3,1,3,1,3\}$.)
5. A computer is programmed to randomly generate a string of six symbols using only the letters A, B, C. What is the probability that the string will not contain three consecutive A's?
6. Let $a_{3}=\frac{2+3}{1+6}$, and for each $n \geq 4$, let

$$
a_{n}=\frac{n+a_{n-1}}{1+n a_{n-1}}
$$

Find a_{1995}.
7. Let n be a positive integer. A bit string of length n is a sequence of n numbers consisting of 0 's and 1's. Let $f(n)$ denote the number of bit strings of length n in which every 0 is surrounded by 1 's. (Thus for $n=5,11101$ is allowed, but 10011 and 10110 are not allowed, and we have $f(3)=2, f(4)=3$.) Prove that $f(n)<1.7^{n}$ for all n.
8. Let x be a real number strictly between 0 and 1 . For each positive integer n, define $f_{n}(t)=t+\frac{t^{2}}{n}$, and let

$$
a_{n}=f_{n}\left(f_{n}\left(\ldots f_{n}(x)\right) \ldots\right)
$$

where f_{n} is iterated n times. Determine $\lim _{n \rightarrow \infty} a_{n}$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

