7. Convergence

Po-Shen Loh

CMU Putnam Seminar, Fall 2022

1 Well-known statements

Infimum and supremum. The infimum of a set of numbers $S \subseteq \mathbb{R}$ is the largest real number x such that $x \leq s$ for all $s \in S$. The supremum is the smallest real number y such that $y \geq s$ for all $s \in S$.

Monotone sequence. Let $a_{1} \geq a_{2} \geq a_{3} \geq \cdots$ be a sequence of non-negative numbers. Then $\lim _{n \rightarrow \infty} a_{n}$ exists.

Alternating series. Let a_{1}, a_{2}, \ldots be a sequence of real numbers which is decreasing in absolute value, converging to 0 , and alternating in sign. Then the series $\sum_{i=1}^{\infty} a_{i}$ converges.

Conditionally convergent. Let a_{1}, a_{2}, \ldots be a sequence of real numbers such that the series $\sum_{i=1}^{\infty} a_{i}$ converges to a finite number, but $\sum_{i=1}^{\infty}\left|a_{i}\right|=\infty$. This is called a conditionally convergent series. Then, for any real number r, the sequence can be rearranged so that the series converges to r. (Formally, there exists a bijection $\sigma: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{\sigma(i)}=r$.)

2 Problems

1. Which of these these series converge or diverge: $\sum_{n=1}^{\infty} \frac{1}{n}, \sum_{n=1}^{\infty} \frac{1}{2 n}, \sum_{n=10}^{\infty} \frac{1}{n \log n}, \sum_{n=100}^{\infty} \frac{1}{n \log n \log \log n}$, ...?
2. Prove that the equation $x^{x^{x^{x}}}=2$ is satisfied by $x=\sqrt{2}$, but that the equation $x^{x^{x^{\prime}}}=4$ has no solution. What is the "break-point"?
3. The expression $\sqrt{-\frac{2}{9}+\sqrt{-\frac{2}{9}+\sqrt{-\frac{2}{9}+\cdots}}}$ is not clearly defined. Consider the recursion $a_{n+1}=$ $\sqrt{-\frac{2}{9}+a_{n}}$ with $a_{1}=0.34$. What does that sequence converge to, and why?
4. Suppose that a_{1}, a_{2}, \ldots is a sequence of real numbers such that for each k, a_{k} is either $\frac{1}{k}$ or $-\frac{1}{k}$, and a_{k} has the same sign as a_{k+8}. Show that if four of $a_{1}, a_{2}, \ldots, a_{8}$ are positive, then $\sum_{k=1}^{\infty} a_{k}$ converges. Is the converse true?
5. Prove that a sequence of positive numbers, each of which is less than the average of the previous two, is convergent.
6. Prove that every sequence of real numbers contains a monotone subsequence. Formally, show that for every sequence a_{1}, a_{2}, \ldots of real numbers, there is a function $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that $f(i)<f(j)$ for all $i<j$, and either $a_{f(1)} \leq a_{f(2)} \leq a_{f(3)} \leq \cdots$ or $a_{f(1)} \geq a_{f(2)} \geq a_{f(3)} \geq \cdots$.
7. Given a convergent series of positive terms, $\sum_{k=1}^{\infty} a_{k}$, does the series $\sum_{k=1}^{\infty} \frac{a_{1}+\cdots+a_{k}}{k}$ always converge? How about the series $\sum_{k=1}^{\infty} \sqrt[k]{a_{1} \times \cdots \times a_{k}}$?
8. Let a_{1}, a_{2}, \ldots be a sequence of positive real numbers satisfying $a_{n}<a_{n+1}+a_{n^{2}}$ for all n. Prove that $\sum a_{n}$ diverges.
9. Let a_{i} be real numbers such that $\sum_{1}^{\infty} a_{i}=1$ and $\left|a_{1}\right|>\left|a_{2}\right|>\left|a_{3}\right|>\cdots$. Suppose that f is a bijection from the positive integers to itself, and

$$
|f(i)-i|\left|a_{i}\right| \rightarrow 0
$$

as $i \rightarrow \infty$. Prove or disprove that $\sum_{1}^{\infty} a_{f(i)}=1$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

