6. Inequalities

Po-Shen Loh

CMU Putnam Seminar, Fall 2022

1 Well-known statements

AM-GM. Let $a_{1}, a_{2}, \ldots, a_{n}$ be non-negative real numbers. Then

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \frac{a_{1}+\cdots+a_{n}}{n}
$$

with equality if and only if all a_{i} are equal.
Cauchy-Schwarz. Let v and w be vectors in an inner product space. Then

$$
|\langle v, w\rangle|^{2} \leq\langle v, v\rangle \cdot\langle w, w\rangle
$$

with equality only if v and w are proportional. Equivalently, if a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} are sequences of real numbers, then

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

Smoothing principle. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function. Then if $x+y=x^{\prime}+y^{\prime}$ but x^{\prime} and y^{\prime} are closer together, we have

$$
f\left(x^{\prime}\right)+f\left(y^{\prime}\right) \leq f(x)+f(y)
$$

Furthermore, if f is strictly convex, then the inequality is strict.
Compactness. If D is a compact set and $f: D \rightarrow \mathbb{R}$ is continuous, then f achieves a maximum on D, i.e., there is at point $x \in D$ such that for all $y \in D, f(x) \geq f(y)$.

Jensen. If f is a convex function, then f (average of x 's) \leq average of $f(x)$'s. This implies, for example, that $x^{p} y^{1-p} \leq p x+(1-p) y$.

2 Problems

1. Joe has a higher batting average than Mike for the first half of the season, and Joe also has a higher batting average than Mike for the second half of the season. Does it follow that Joe has a higher batting average than Mike for the whole season?
2. If $a_{1}+\cdots+a_{n}=n$, prove that $a_{1}^{4}+\cdots+a_{n}^{4} \geq n$.
3. Let a_{1}, \ldots, a_{n} be distinct real numbers. Find the maximum of

$$
a_{1} a_{\sigma(1)}+a_{2} a_{\sigma(2)}+\cdots a_{n} a_{\sigma(n)}
$$

over all permutations of the set $\{1, \ldots, n\}$.
4. At every lattice point in the plane there is placed a positive number in such a way that each is the average of its four nearest neighbors. Show that all the numbers are the same. (A lattice point is a point whose coordinates are both integers.)
5. Prove that in any set of 2000 distinct real numbers there exist four elements a, b, c, d with:

- $a>b$, and
- $c>d$, and
- $a \neq c$ or $b \neq d$,
such that

$$
\left|\frac{a-b}{c-d}-1\right|<\frac{1}{100000} .
$$

6. Show that if $f(x)$ is a function from $\mathbb{R} \rightarrow \mathbb{R}$, whose first and second derivatives both exist and are continuous, and both $f(x)$ and $f^{\prime \prime}(x)$ are bounded, then $f^{\prime}(x)$ is also bounded.
7. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers, and suppose that b is a real number for which

$$
b<\frac{\left(\sum a_{i}\right)^{2}}{n-1}-\sum a_{i}^{2} .
$$

Show that $b<2 a_{i} a_{j}$ for all distinct pairs of i and j.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

