5. Functional equations

Po-Shen Loh

CMU Putnam Seminar, Fall 2022

1 Well-known statements

Cauchy. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function that satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Then there must be a real number c such that $f(x)=c x$ for all $x \in \mathbb{R}$.

Discontinuous Cauchy. Without the continuity assumption, there are more solutions (using the Axiom of Choice).

Triple iterate. Let $f(x)=1-\frac{1}{x}$. Then $f(f(f(x)))=x$.

2 Problems

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(f(f(x)))=x$ for all $x \in \mathbb{R}$. Prove that $f(x)=x$ for all $x \in \mathbb{R}$.
2. Determine all continuous functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ which satisfy

$$
f(x y)=f(x)+f(y)
$$

for all positive real numbers x, y.
3. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x+y)=f(x)+f(y)+f(x) f(y)
$$

4. Let $n_{1}, n_{2}, n_{3}, \ldots$ be a sequence of positive integers with the property that for every $k \geq 1$,

$$
n_{k+1}>n_{n_{k}}
$$

Prove that this must be the sequence $1,2,3, \ldots$
5. Do there exist continuous functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(g(x))=x^{2}$ and $g(f(x))=x^{3}$ for all real numbers x ?
6. Does there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(f(x))=x^{2}-2$ for all real numbers x ?
7. There is a function $f(x)$, continuous on the whole real line, which is not identically zero, but satisfies the equation

$$
f(x)+f(2 x)+f(3 x)=0
$$

for all $x \in \mathbb{R}$.
8. Define the recursion:

$$
\begin{aligned}
\ell_{0}(s) & =e^{-s} \\
\ell_{t+1}(s) & =\frac{1}{1+\ell_{t}\left(\frac{1}{2}\right)}\left[\begin{array}{l}
\ell_{t}\left(s \cdot \frac{1+\ell_{t}\left(\frac{1}{2}\right)}{2}\right)^{2}-\ell_{t}\left(s \cdot \frac{1+\ell_{t}\left(\frac{1}{2}\right)}{2}\right) \ell_{t}\left(\frac{1}{2}+s \cdot \frac{1+\ell_{t}\left(\frac{1}{2}\right)}{2}\right) \\
+\ell_{t}\left(\frac{1}{2}+s \cdot \frac{1+\ell_{t}\left(\frac{1}{2}\right)}{2}\right)+\ell_{t}\left(\frac{1}{2}\right) \ell_{t}\left(s \cdot \frac{1+\ell_{t}\left(\frac{1}{2}\right)}{2}\right)
\end{array}\right]
\end{aligned}
$$

Prove that $\ell_{t}\left(\frac{1}{2}\right) \rightarrow 1$ as $t \rightarrow \infty .{ }^{1}$

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

[^0]
[^0]: ${ }^{1}$ P. Loh and E. Lubetzky, Stochastic coalescence in logarithmic time, Annals of Applied Probability, 23 (2013), 492-528.

