3. Number theory

Po-Shen Loh

CMU Putnam Seminar, Fall 2022

1 Well-known statements

Fermat's Little Theorem. For every prime p and any integer a which is not divisible by p, we have $a^{p-1} \equiv 1(\bmod p)$.
Euler's Theorem. Let $\varphi(n)$ denote the number of positive integers in $\{1,2, \ldots, n\}$ which are relatively prime to n. Then, for any integer a which is relatively prime to n,

$$
a^{\varphi(n)} \equiv 1 \quad(\bmod n)
$$

Wilson's Theorem. A positive integer n is a prime if and only if $(n-1)!\equiv-1(\bmod n)$.
Dirichlet's Theorem. For any two positive integers a and d which are relatively prime, the arithmetic progression $a, a+d, a+2 d, \ldots$ contains infinitely many primes.
Quadratic residues. Let p be a prime. There are exactly $\frac{p+1}{2}$ residues r such that there exist solutions to $x^{2} \equiv r(\bmod p)$.

2 Problems

1. The 9 -digit number 2^{29} has exactly 9 digits, and they are all distinct. Which of the 10 possible digits 0-9 does not appear?
2. There are infinitely many primes of the form $4 n-1$, where n is an integer.
3. Let p be a prime, and let $n \geq k$ be non-negative integers. Prove that

$$
\binom{p n}{p k} \equiv\binom{n}{k} \quad(\bmod p)
$$

4. Show that for every positive integer n, there is an integer $N>n$ such that the number 5^{n} appears as the last few digits of 5^{N}. For example, if $n=3$, we have $5^{3}=125$, and $5^{5}=3125$, so $N=5$ would work.
5. Prove that the product of 3 consecutive integers is never a perfect power (i.e., a perfect square, a perfect cube, etc).
6. How many integers r in $\left\{0,1, \ldots, 2^{n}-1\right\}$ are there for which there exists an x where $x^{2} \equiv r\left(\bmod 2^{n}\right)$?
7. Let n, a, b be positive integers. Prove that $\operatorname{gcd}\left(n^{a}-1, n^{b}-1\right)=n^{\operatorname{gcd}(a, b)}-1$.
8. A positive integer is wrtten at each integer point in the plane $\left(\mathbb{Z}^{2}\right)$, in such a way that each of these numbers is the arithmetic mean of its four neighbors. Prove that all of the numbers are equal.
9. A triangular number is a positive integer of the form $n(n+1) / 2$. Prove that m is the sum of two triangular numbers if and only if $4 m+1$ is the sum of two squares.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

