Putnam 5.12

Po-Shen Loh

14 November 2021

1 Problems

Putnam 2009/A4. Let S be a set of rational numbers such that
(a) $0 \in S$;
(b) If $x \in S$ then $x+1 \in S$ and $x-1 \in S$; and
(c) If $x \in S$ and $x \notin\{0,1\}$, then $\frac{1}{x(x-1)} \in S$.

Must S contain all rational numbers?
Putnam 2009/A5. Is there a finite abelian group G such that the product of the orders of all its elements is 2^{2009} ?

Putnam 2009/A6. Let $f:[0,1]^{2} \rightarrow \mathbb{R}$ be a continuous function on the closed unit square such that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous on the interior $(0,1)^{2}$. Let $a=\int_{0}^{1} f(0, y) d y, b=\int_{0}^{1} f(1, y) d y$, $c=\int_{0}^{1} f(x, 0) d x, d=\int_{0}^{1} f(x, 1) d x$. Prove or disprove: There must be a point $\left(x_{0}, y_{0}\right)$ in $(0,1)^{2}$ such that

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=b-a \quad \text { and } \quad \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=d-c .
$$

