Putnam ${ }^{2.8}$

Po-Shen Loh

17 October 2021

1 Problems

The Magic Word is "express". Please order by 5 pm .
Putnam 2005/B4. For positive integers m and n, let $f(m, n)$ denote the number of n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of integers such that $\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \leq m$. Show that $f(m, n)=f(n, m)$.

Putnam 2005/B5. Let $P\left(x_{1}, \ldots, x_{n}\right)$ denote a polynomial with real coefficients in the variables x_{1}, \ldots, x_{n}, and suppose that

$$
\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right) P\left(x_{1}, \ldots, x_{n}\right)=0 \quad \text { (identically) }
$$

and that

$$
x_{1}^{2}+\cdots+x_{n}^{2} \text { divides } P\left(x_{1}, \ldots, x_{n}\right)
$$

Show that $P=0$ identically.
Putnam 2005/B6. Let S_{n} denote the set of all permutations of the numbers $1,2, \ldots, n$. For $\pi \in S_{n}$, let $\sigma(\pi)=1$ if π is an even permutation and $\sigma(\pi)=-1$ if π is an odd permutation. Also, let $\nu(\pi)$ denote the number of fixed points of π. Show that

$$
\sum_{\pi \in S_{n}} \frac{\sigma(\pi)}{\nu(\pi)+1}=(-1)^{n+1} \frac{n}{n+1}
$$

