Putnam 2.5

Po-Shen Loh

26 September 2021

1 Problems

Putnam 2014/B4. Show that for each positive integer n, all the roots of the polynomial

$$
\sum_{k=0}^{n} 2^{k(n-k)} x^{k}
$$

are real numbers.
Putnam 2014/B5. In the 75th annual Putnam Games, participants compete at mathematical games. Patniss and Keeta play a game in which they take turns choosing an element from the group of invertible $n \times n$ matrices with entries in the field $\mathbb{Z} / p \mathbb{Z}$ of integers modulo p, where n is a fixed positive integer and p is a fixed prime number. The rules of the game are:
(1) A player cannot choose an element that has been chosen by either player on any previous turn.
(2) A player can only choose an element that commutes with all previously chosen elements.
(3) A player who cannot choose an element on his/her turn loses the game.

Patniss takes the first turn. Which player has a winning strategy? (Your answer may depend on n and p.)

Putnam 2014/B6. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function for which there exists a constant $K>0$ such that $|f(x)-f(y)| \leq K|x-y|$ for all $x, y \in[0,1]$. Suppose also that for each rational number $r \in[0,1]$, there exist integers a and b such that $f(r)=a+b r$. Prove that there exist finitely many intervals I_{1}, \ldots, I_{n} such that f is a linear function on each I_{i} and $[0,1]=\bigcup_{i=1}^{n} I_{i}$.

