Putnam 5.3

Po-Shen Loh

12 September 2021

1 Problems

Putnam 2004/B4. Let n be a positive integer, $n \geq 2$, and put $\theta=2 \pi / n$. Define points $P_{k}=(k, 0)$ in the $x y$-plane, for $k=1,2, \ldots, n$. Let R_{k} be the map that rotates the plane counterclockwise by the angle θ about the point P_{k}. Let R denote the map obtained by applying, in order, R_{1}, then R_{2}, \ldots, then R_{n}. For an arbitrary point (x, y), find, and simplify, the coordinates of $R(x, y)$.

Putnam 2004/B5. Evaluate

$$
\lim _{x \rightarrow 1^{-}} \prod_{n=0}^{\infty}\left(\frac{1+x^{n+1}}{1+x^{n}}\right)^{x^{n}}
$$

Putnam 2004/B6. Let \mathcal{A} be a non-empty set of positive integers, and let $N(x)$ denote the number of elements of \mathcal{A} not exceeding x. Let \mathcal{B} denote the set of positive integers b that can be written in the form $b=a-a^{\prime}$ with $a \in \mathcal{A}$ and $a^{\prime} \in \mathcal{A}$. Let $b_{1}<b_{2}<\cdots$ be the members of \mathcal{B}, listed in increasing order. Show that if the sequence $b_{i+1}-b_{i}$ is unbounded, then

$$
\lim _{x \rightarrow \infty} N(x) / x=0
$$

