Putnam ${ }^{5.2}$

Po-Shen Loh

5 September 2021

1 Problems

Putnam 2004/A4. Show that for any positive integer n, there is an integer N such that the product $x_{1} x_{2} \cdots x_{n}$ can be expressed identically in the form

$$
x_{1} x_{2} \cdots x_{n}=\sum_{i=1}^{N} c_{i}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}\right)^{n}
$$

where the c_{i} are rational numbers and each $a_{i j}$ is one of the numbers $-1,0,1$.
Putnam 2004/A5. An $m \times n$ checkerboard is colored randomly: each square is independently assigned red or black with probability $1 / 2$. We say that two squares, p and q, are in the same connected monochromatic component if there is a sequence of squares, all of the same color, starting at p and ending at q, in which successive squares in the sequence share a common side. Show that the expected number of connected monochromatic regions is greater than $m n / 8$.

Putnam 2004/A6. Suppose that $f(x, y)$ is a continuous real-valued function on the unit square $0 \leq x \leq$ $1,0 \leq y \leq 1$. Show that

$$
\begin{aligned}
& \int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right)^{2} d y+\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right)^{2} d x \\
& \leq\left(\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y\right)^{2}+\int_{0}^{1} \int_{0}^{1}(f(x, y))^{2} d x d y
\end{aligned}
$$

