Putnam E. 10

Po-Shen Loh

2 November 2021

1 Problems

Putnam 2017/B1. Let L_{1} and L_{2} be distinct lines in the plane. Prove that L_{1} and L_{2} intersect if and only if, for every real number $\lambda \neq 0$ and every point P not on L_{1} or L_{2}, there exist points A_{1} on L_{1} and A_{2} on L_{2} such that $\overrightarrow{P A_{2}}=\lambda \overrightarrow{P A_{1}}$.

Putnam 2017/B2. Suppose that a positive integer N can be expressed as the sum of k consecutive positive integers

$$
N=a+(a+1)+(a+2)+\cdots+(a+k-1)
$$

for $k=2017$ but for no other values of $k>1$. Considering all positive integers N with this property, what is the smallest positive integer a that occurs in any of these expressions?

Putnam 2017/B3. Suppose that $f(x)=\sum_{i=0}^{\infty} c_{i} x^{i}$ is a power series for which each coefficient c_{i} is 0 or 1 . Show that if $f(2 / 3)=3 / 2$, then $f(1 / 2)$ must be irrational.

