Putnam E.10

Po-Shen Loh

2 November 2021

1 Problems

- **Putnam 2017/B1.** Let L_1 and L_2 be distinct lines in the plane. Prove that L_1 and L_2 intersect if and only if, for every real number $\lambda \neq 0$ and every point P not on L_1 or L_2 , there exist points A_1 on L_1 and A_2 on L_2 such that $\overrightarrow{PA_2} = \lambda \overrightarrow{PA_1}$.
- **Putnam 2017/B2.** Suppose that a positive integer N can be expressed as the sum of k consecutive positive integers

 $N = a + (a + 1) + (a + 2) + \dots + (a + k - 1)$

for k = 2017 but for no other values of k > 1. Considering all positive integers N with this property, what is the smallest positive integer a that occurs in any of these expressions?

Putnam 2017/B3. Suppose that $f(x) = \sum_{i=0}^{\infty} c_i x^i$ is a power series for which each coefficient c_i is 0 or 1. Show that if f(2/3) = 3/2, then f(1/2) must be irrational.