Putnam E. 9

Po-Shen Loh

26 October 2021

1 Problems

Putnam 2017/A1. Let S be the smallest set of positive integers such that
(a) 2 is in S,
(b) n is in S whenever n^{2} is in S, and
(c) $(n+5)^{2}$ is in S whenever n is in S.

Which positive integers are not in S ?
(The set S is "smallest" in the sense that S is contained in any other such set.)
Putnam 2017/A2. Let $Q_{0}(x)=1, Q_{1}(x)=x$, and

$$
Q_{n}(x)=\frac{\left(Q_{n-1}(x)\right)^{2}-1}{Q_{n-2}(x)}
$$

for all $n \geq 2$. Show that, whenever n is a positive integer, $Q_{n}(x)$ is equal to a polynomial with integer coefficients.

Putnam 2017/A3. Let a and b be real numbers with $a<b$, and let f and g be continuous functions from $[a, b]$ to $(0, \infty)$ such that $\int_{a}^{b} f(x) d x=\int_{a}^{b} g(x) d x$ but $f \neq g$. For every positive integer n, define

$$
I_{n}=\int_{a}^{b} \frac{(f(x))^{n+1}}{(g(x))^{n}} d x
$$

Show that $I_{1}, I_{2}, I_{3}, \ldots$ is an increasing sequence with $\lim _{n \rightarrow \infty} I_{n}=\infty$.

