Putnam E.8

Po-Shen Loh

19 October 2021

1 Problems

Putnam 2007/B1. Let f be a nonconstant polynomial with positive integer coefficients. Prove that if n is a positive integer, then f(n) divides f(f(n) + 1) if and only if n = 1.

Putnam 2007/B2. Suppose that $f:[0,1]\to\mathbb{R}$ has a continuous derivative and that $\int_0^1 f(x) dx = 0$. Prove that for every $\alpha\in(0,1)$,

$$\left| \int_0^\alpha f(x) \, dx \right| \le \frac{1}{8} \max_{0 \le x \le 1} |f'(x)|.$$

Putnam 2007/B3. Let $x_0 = 1$ and for $n \ge 0$, let $x_{n+1} = 3x_n + \lfloor x_n \sqrt{5} \rfloor$. In particular, $x_1 = 5$, $x_2 = 26$, $x_3 = 136$, $x_4 = 712$. Find a closed-form expression for x_{2007} . ($\lfloor a \rfloor$ means the largest integer $\le a$.)