# Putnam E. 03 

Po-Shen Loh

14 September 2021

## 1 Problems

Putnam 2016/B1. Let $x_{0}, x_{1}, x_{2}, \ldots$ be the sequence such that $x_{0}=1$ and for $n \geq 0$,

$$
x_{n+1}=\ln \left(e^{x_{n}}-x_{n}\right)
$$

(as usual, the function $\ln$ is the natural logarithm). Show that the infinite series

$$
x_{0}+x_{1}+x_{2}+\cdots
$$

converges and find its sum.
Putnam 2016/B2. Define a positive integer $n$ to be squarish if either $n$ is itself a perfect square or the distance from $n$ to the nearest perfect square is a perfect square. For example, 2016 is squarish, because the nearest perfect square to 2016 is $45^{2}=2025$ and $2025-2016=9$ is a perfect square. (Of the positive integers between 1 and 10, only 6 and 7 are not squarish.)
For a positive integer $N$, let $S(N)$ be the number of squarish integers between 1 and $N$, inclusive. Find positive constants $\alpha$ and $\beta$ such that

$$
\lim _{N \rightarrow \infty} \frac{S(N)}{N^{\alpha}}=\beta
$$

or show that no such constants exist.
Putnam 2016/B3. Suppose that $S$ is a finite set of points in the plane such that the area of triangle $\triangle A B C$ is at most 1 whenever $A, B$, and $C$ are in $S$. Show that there exists a triangle of area 4 that (together with its interior) covers the set $S$.

