Putnam E. 03

Po-Shen Loh

14 September 2021

1 Problems

Putnam 2016/A1. Find the smallest positive integer j such that for every polynomial $p(x)$ with integer coefficients and for every integer k, the integer

$$
p^{(j)}(k)=\left.\frac{d^{j}}{d x^{j}} p(x)\right|_{x=k}
$$

(the j-th derivative of $p(x)$ at k) is divisible by 2016.
Putnam 2016/A2. Given a positive integer n, let $M(n)$ be the largest integer m such that

$$
\binom{m}{n-1}>\binom{m-1}{n}
$$

Evaluate

$$
\lim _{n \rightarrow \infty} \frac{M(n)}{n} .
$$

Putnam 2016/A3. Suppose that f is a function from \mathbb{R} to \mathbb{R} such that

$$
f(x)+f\left(1-\frac{1}{x}\right)=\arctan x
$$

for all real $x \neq 0$. (As usual, $y=\arctan x$ means $-\pi / 2<y<\pi / 2$ and $\tan y=x$.) Find

$$
\int_{0}^{1} f(x) d x
$$

