8. Recursions

Po-Shen Loh

CMU Putnam Seminar, Fall 2021

1 Famous results

Monotone sequences. A sequence a_{1}, a_{2}, \ldots is called monotone increasing if $a_{n+1} \geq a_{n}$ for all n, and monotone decreasing if $a_{n+1} \leq a_{n}$ for all n. A monotone sequence refers to a sequence that is in one of these two categories. Every monotone sequence converges to a limit.

Wallis product. Wow!

$$
\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots=\frac{\pi}{2} .
$$

2 Problems

1. Define the sequence $a_{0}=-1, a_{1}=0$, and

$$
a_{n+1}=a_{n}^{2}-(n+1)^{2} a_{n-1}-1
$$

Find a_{100}.
2. For a real number α, define the sequence $a_{1}, a_{2}, a_{3}, \ldots$ by starting $a_{1}=\alpha$, and defining $a_{n+1}=$ $a_{n}\left(1-a_{n}\right)$ for every $n \geq 1$. Prove that if $0<\alpha<1$, the resulting sequence always converges to 0 . What happens if $\alpha<0$? What happens if $\alpha>1$? What happens if $\alpha=0$ or $\alpha=1$?
3. Let $a_{0}=0$, and for each $n \geq 0$, let $a_{n+1}=1+\sin \left(a_{n}-1\right)$. Determine $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} a_{i}$.
4. For a real number α, define the sequence $a_{1}, a_{2}, a_{3}, \ldots$ by starting $a_{1}=\alpha$, and defining $a_{n+1}=$ $a_{n}\left(1-a_{n}\right)$ for every $n \geq 1$. Prove that if $0<\alpha<1$,

$$
\lim _{n \rightarrow \infty} n a_{n}=1
$$

5. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence which satisfies $a_{1} a_{2}=1, a_{2} a_{3}=2, a_{3} a_{4}=3, a_{4} a_{5}=4$, etc., as well as $\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=1$. Prove that $a_{1}=\sqrt{\frac{2}{\pi}}$.
6. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Let x_{1}, x_{2}, \ldots be a sequence satisfying $x_{n+1}=f\left(x_{n}\right)$ for all $n \geq 1$, and suppose that

$$
\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=0
$$

Prove that the entire sequence x_{1}, x_{2}, \ldots converges.
7. Let

$$
a_{n}=\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{\cdots+(n-3) \sqrt{1+(n-2) \sqrt{1+(n-1) \sqrt{1+(n)}}}}}} .}
$$

Prove that $\lim _{n \rightarrow \infty} a_{n}=3$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

