7. Convergence

Po-Shen Loh

CMU Putnam Seminar, Fall 2021

1 Famous results

Continued root. $\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}=3$.
Supremum/infimum. The supremum of a set S of real numbers is defined to be the smallest real number y such that all $s \in S$ are less than or equal to y. The infimum is the largest real number x such that all $s \in S$ are greater than or equal to x. A bounded sequence of monotonically increasing real numbers always converges to its supremum.

Limit superior/inferior.

$$
\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty}\left(\inf _{k \geq n} x_{k}\right) ; \quad \limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty}\left(\sup _{k \geq n} x_{k}\right)
$$

The liminf of a sequence is always less than or equal to its limsup, and if they are equal, then the sequence has a limit.
Sub-additivity. Let x_{1}, x_{2}, \ldots be a sequence of real numbers such that $x_{i+j} \leq x_{i}+x_{j}$ for all (not necessarily distinct) positive integers i and j. Then $\lim _{n \rightarrow \infty} \frac{1}{n} x_{n}$ always exists, and is either a real number or $-\infty$.

2 Problems

1. Let a_{1}, a_{2}, \ldots be a sequence of non-negative real numbers such that $a_{m+n} \leq a_{m} a_{n}$ for all $m, n \in \mathbb{Z}^{+}$. (This even includes cases when $m=n$.) Show that the sequence $a_{n}^{1 / n}$ converges.
2. For each n, let $f(n)$ denote the largest integer such that $2^{f(n)}$ divides n. For example, $f(3)=0$ since 3 is odd, and $f(24)=3$ since 2^{3} is the highest power of 2 which divides 24 . Let $g(n)=f(1)+f(2)+\cdots+f(n)$. Prove that

$$
\sum_{n=1}^{\infty} e^{-g(n)}
$$

converges.
3. Let a_{1}, a_{2}, \ldots be a sequence of real numbers such that the sequence $a_{1}+2 a_{2}, a_{2}+2 a_{3}, a_{3}+2 a_{4}$, \ldots converges. Prove that the sequence a_{1}, a_{2}, \ldots must then also converge.
4. What if we are told that the sequence $a_{1}+a_{2}, a_{2}+a_{3}, a_{3}+a_{4}, \ldots$ converges? Does that imply that a_{1}, a_{2}, \ldots converges? For a third variant, must a_{1}, a_{2}, \ldots converge if we are told that $2 a_{1}+a_{2}, 2 a_{2}+a_{3}$, ... converges?
5. Let a_{1}, a_{2}, \ldots be a sequence of non-negative real numbers, for which $\sum a_{i}$ converges. Suppose also that $a_{j} \leq 100 a_{i}$ for all $i \leq j \leq 2 i$. Show that $\lim _{n \rightarrow \infty} n a_{n}=0$.
6. Let a_{1}, a_{2}, \ldots be a strictly increasing sequence of positive real numbers, such that $\sum a_{i}^{-1}$ converges. For each positive real x, let $f(x)$ be the largest integer i for which $a_{i}<x$. Prove that

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=0
$$

7. Let

$$
a_{n}=\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{\cdots+(n-3) \sqrt{1+(n-2) \sqrt{1+(n-1) \sqrt{1+(n)}}}}}} .}
$$

Prove that $\lim _{n \rightarrow \infty} a_{n}=3$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

