5. Functional equations

Po-Shen Loh

CMU Putnam Seminar, Fall 2021

1 Famous results

Cauchy. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function that satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Then there must be a real number c such that $f(x)=c x$ for all $x \in \mathbb{R}$.

Cauchy-Schwarz. Let v and w be vectors in an inner product space. Then

$$
|\langle v, w\rangle|^{2} \leq\langle v, v\rangle \cdot\langle w, w\rangle
$$

with equality only if v and w are proportional.
Triple iterate. Let $f(x)=1-\frac{1}{x}$. Then $f(f(f(x)))=x$.

2 Problems

1. An even function is one which satisfies the equation $f(-x)=f(x)$ for all x. Prove that if $P(x)$ is a polynomial that is an even function, then all of its nonzero terms have even powers of x. An odd function is one which satisfies $f(-x)=-f(x)$ for all x. Prove that if $P(x)$ is a polynomial that is an odd function, then all of its nonzero terms have odd powers of x.
2. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
x+f(x)=f(f(x))
$$

for every $x \in \mathbb{R}$. Find all a which satisfy $f(f(a))=0$.
3. Let $X=\mathbb{R} \backslash\{0,1\}$. Find all functions $f: X \rightarrow \mathbb{R}$ that satisfy

$$
f(x)+f\left(1-\frac{1}{x}\right)=1+x
$$

for all $x \in X$.
4. Find all strictly increasing functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all x :

$$
f(x)+f^{-1}(x)=2 x
$$

5. Let α be a real number. Are there any continuous real-valued functions $f:[0,1] \rightarrow \mathbb{R}^{+}$such that

$$
\int_{0}^{1} f(x) d x=1, \quad \int_{0}^{1} x f(x) d x=\alpha, \text { and } \quad \int_{0}^{1} x^{2} f(x) d x=\alpha^{2} ?
$$

6. Let $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be strictly monotone increasing, meaning that $f(x)<f(y)$ for all $x<y$. Suppose that $f(2)=2$, and for every positive integers x, y with $\operatorname{gcd}(x, y)=1$, we have $f(x y)=f(x) f(y)$. Prove that $f(x)=x$ for all x.
7. Find all continuously differentiable functions from $\mathbb{R} \rightarrow \mathbb{R}^{+}$, if any, which satisfy $f^{\prime}(x)=f(x)$ for all x. Then, find all continuously differentiable functions from $\mathbb{R} \rightarrow \mathbb{R}^{+}$, if any, which satisfy $f^{\prime}(x)=f(f(x))$ for all x. What if the range is allowed to be all of \mathbb{R} ?
8. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for any $x, y \in \mathbb{R}$:

$$
f(f(x) f(y))+f(x+y)=f(x y)
$$

9. Find all twice differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy $f(x)^{2}-f(y)^{2}=f(x+y) f(x-y)$ for all $x, y \in \mathbb{R}$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

