5. Functional equations

Po-Shen Loh

CMU Putnam Seminar, Fall 2021

1 Famous results

Cauchy. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function that satisfies f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Then there must be a real number c such that f(x) = cx for all $x \in \mathbb{R}$.

Cauchy-Schwarz. Let v and w be vectors in an inner product space. Then

$$|\langle v, w \rangle|^2 \le \langle v, v \rangle \cdot \langle w, w \rangle,$$

with equality only if v and w are proportional.

Triple iterate. Let $f(x) = 1 - \frac{1}{x}$. Then f(f(f(x))) = x.

2 Problems

- 1. An even function is one which satisfies the equation f(-x) = f(x) for all x. Prove that if P(x) is a polynomial that is an even function, then all of its nonzero terms have even powers of x. An odd function is one which satisfies f(-x) = -f(x) for all x. Prove that if P(x) is a polynomial that is an odd function, then all of its nonzero terms have odd powers of x.
- 2. Suppose that $f : \mathbb{R} \to \mathbb{R}$ satisfies

$$x + f(x) = f(f(x))$$

for every $x \in \mathbb{R}$. Find all a which satisfy f(f(a)) = 0.

3. Let $X = \mathbb{R} \setminus \{0, 1\}$. Find all functions $f : X \to \mathbb{R}$ that satisfy

$$f(x) + f\left(1 - \frac{1}{x}\right) = 1 + x$$

for all $x \in X$.

4. Find all strictly increasing functions $f : \mathbb{R} \to \mathbb{R}$ such that for all x:

$$f(x) + f^{-1}(x) = 2x.$$

5. Let α be a real number. Are there any continuous real-valued functions $f:[0,1] \to \mathbb{R}^+$ such that

$$\int_{0}^{1} f(x)dx = 1, \qquad \int_{0}^{1} x f(x)dx = \alpha, \text{and} \qquad \int_{0}^{1} x^{2} f(x)dx = \alpha^{2}?$$

6. Let $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ be strictly monotone increasing, meaning that f(x) < f(y) for all x < y. Suppose that f(2) = 2, and for every positive integers x, y with gcd(x, y) = 1, we have f(xy) = f(x)f(y). Prove that f(x) = x for all x.

- 7. Find all continuously differentiable functions from $\mathbb{R} \to \mathbb{R}^+$, if any, which satisfy f'(x) = f(x) for all x. Then, find all continuously differentiable functions from $\mathbb{R} \to \mathbb{R}^+$, if any, which satisfy f'(x) = f(f(x)) for all x. What if the range is allowed to be all of \mathbb{R} ?
- 8. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for any $x, y \in \mathbb{R}$:

$$f(f(x)f(y)) + f(x+y) = f(xy).$$

9. Find all twice differentiable functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy $f(x)^2 - f(y)^2 = f(x+y)f(x-y)$ for all $x, y \in \mathbb{R}$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.