3. Number theory

Po-Shen Loh
CMU Putnam Seminar, Fall 2021

1 Famous results

Fermat's Little Theorem. For every prime p and any integer a which is not divisible by p, we have $a^{p-1} \equiv 1(\bmod p)$.

Euler. Let $\varphi(n)$ denote the number of positive integers in $\{1,2, \ldots, n\}$ which are relatively prime to n. Then, for any integer a which is relatively prime to n,

$$
a^{\varphi(n)} \equiv 1 \quad(\bmod n)
$$

Frobenius coin problem. Suppose that a country has two types of coins, worth a and b, where a and b are relatively prime. Then, the largest integer value which cannot be obtained through the coins is $a b-a-b$. However, if the country has three types of coins, worth a, b, and c, then there is no explicit formula known for the largest unattainable integer value.

2 Problems

1. Prove that for every integer $n>1, n$ does not divide $2^{n}-1$.
2. Suppose that an infinite arithmetic progression of positive integers contains a perfect n-th power (some a^{n} for an integer a). Show that it must then contain infinitely many perfect n-th powers.
3. For positive integers n, define the function $f(n)$ as follows: write n as a product of (not necessarily distinct) primes $p_{1} p_{2} \cdots p_{t}$, and let $f(n)=(-1)^{t}$. For example, $f(24)=(-1)^{4}$ because $24=2 \times 2 \times 2 \times 3$. Define

$$
F(n)=\sum_{d \mid n} f(d)
$$

Prove that for all positive integers n, the value of $F(n)$ is either 0 or 1 , and characterize the n for which $F(n)=1$.
4. McDonalds sells Chicken McNuggets in boxes of size a and b, where a and b are positive integers (of course). If you are hungry but picky, and would like to order exactly $n \mathrm{McNuggets}$, the only way to do this is to order some combination of full boxes of the two available sizes. A sharp kid observes that it is not possible to obtain exactly 58 McNuggets in this way, but that there are exactly 35 impossible integer values. Find a and b.
5. Show that if a positive integer n is a multiple of 24 , then if one adds up all of the positive divisors of $n-1$ (including 1 and $n-1$), the total is also divisible by 24 .
6. Suppose that for some real number α, all of $1^{\alpha}, 2^{\alpha}, 3^{\alpha}, \ldots$ are integers. Prove that α is a nonnegative integer.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

