21-228 Discrete Mathematics

Assignment 4
Due Mon Mar 22, at start of class

Notes: Collaboration is permitted except in the writing stage. Also, please justify every numerical answer with an explanation.

1. Consider the first 3^{n} rows of Pascal's triangle. These are the rows from $\binom{0}{0}$, which has single number in a row, to $\binom{3^{n}-1}{0}, \ldots,\binom{3^{n}-1}{3^{n}-1}$, which has 3^{n} numbers in a row. For each row, count the number of entries which are not divisible by 3 . If the number of such entries in a row is a prime power (expressible as p^{k} for some prime p and some positive integer $k \geq 1$), then we say that the row is cool. How many of the first 3^{n} rows are cool? Find a general formula in terms of n. It's a nice formula, expressible using only arithmetic and power operations, and without any ellipses or summation $\left(\sum\right)$ or product (Π) notation.
For example, if $n=1$, then we are looking at the first three rows. The first row is just " 1 ", and so it has 1 entry which is not divisible by 3 . As 1 is not a prime power, this row is not cool. The second row is " 11 ", with 2 entries that are not divisible by 3 . Since 2 is a prime power, this row is cool. The third row is " 121 ", with 3 entries (a prime power) non-divisible by 3 , hence it is also cool. Therefore, if $n=1$, then 2 out of the first 3^{1} rows are cool. As a check for your formula, it is known that if $n=4$, then 30 out of the first 3^{4} rows are cool.
2. The Jacobsthal numbers are defined by the recursion $a_{n}=a_{n-1}+2 a_{n-2}$ with initial conditions $a_{1}=1, a_{2}=3$. Prove that

$$
a_{n}=\operatorname{round}\left\{\frac{2^{n+1}}{3}\right\},
$$

for every nonnegative integer n. Here, round (x) denotes the nearest integer to x, rounding up if x is a half-integer. For example, $\operatorname{round}(1.1)=1=\operatorname{round}(0.9)$ and $\operatorname{round}(1.5)=2$.
3. Find an explicit formula for the recursion defined by $a_{n}=2 a_{n-1}-2 a_{n-2}$ with initial conditions $a_{0}=0$ and $a_{1}=1$.
4. In class, we handled the case when matrices were diagonalizable. This exercise guides you through the case when the matrix is not!
Find an explicit formula for the solution to the recurrence $a_{n}=4 a_{n-1}-4 a_{n-2}$, with initial conditions $a_{0}=0$ and $a_{1}=1$. Please use the following (rather than guessing the formula and using induction):

- (Jordan Canonical Form.) There exists a 2×2 matrix P for which

$$
\left[\begin{array}{cc}
0 & 1 \\
-4 & 4
\end{array}\right]=P\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right] P^{-1}
$$

- (Power of elementary Jordan block.) For any λ and any positive integer n :

$$
\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right]^{n}=\left[\begin{array}{cc}
\lambda^{n} & n \lambda^{n-1} \\
0 & \lambda^{n}
\end{array}\right] .
$$

5. Consider the generating function

$$
\frac{1}{1-2 x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Prove that for each integer $n \geq 0$,

$$
a_{n}^{2}+a_{n+1}^{2}=a_{2 n+2} .
$$

Hint: Find a 2×2 matrix A such that

$$
A^{n+2}=\left[\begin{array}{cc}
a_{n} & a_{n+1} \\
a_{n+1} & a_{n+2}
\end{array}\right],
$$

and consider the top left entry of the matrix product $A^{n+2} A^{n+2}$.

