Putnam 2.15

Po-Shen Loh

6 December 2020

1 Problems

Putnam 1995/A4. Suppose we have a necklace of n beads. Each bead is labeled with an integer and the sum of all these labels is $n-1$. Prove that we can cut the necklace to form a string whose consecutive labels $x_{1}, x_{2}, \ldots, x_{n}$ satisfy

$$
\sum_{i=1}^{k} x_{i} \leq k-1 \quad \text { for } \quad k=1,2, \ldots, n
$$

Putnam 1995/A5. Let $x_{1}, x_{2}, \ldots, x_{n}$ be differentiable (real-valued) functions of a single variable t which satisfy

$$
\begin{aligned}
\frac{d x_{1}}{d t}= & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
\frac{d x_{2}}{d t}= & a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
\vdots & \vdots \\
\frac{d x_{n}}{d t}= & a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}
\end{aligned}
$$

for some constants $a_{i j}>0$. Suppose that for all $i, x_{i}(t) \rightarrow 0$ as $t \rightarrow \infty$. Are the functions $x_{1}, x_{2}, \ldots, x_{n}$ necessarily linearly dependent?

Putnam 1995/A6. Suppose that each of n people writes down the numbers $1,2,3$ in random order in one column of a $3 \times n$ matrix, with all orders equally likely and with the orders for different columns independent of each other. Let the row sums a, b, c of the resulting matrix be rearranged (if necessary) so that $a \leq b \leq c$. Show that for some $n \geq 1995$, it is at least four times as likely that both $b=a+1$ and $c=a+2$ as that $a=b=c$.

