Putnam 5.10

Po-Shen Loh

1 November 2020

1 Problems

Putnam 1996/A4. Let S be the set of ordered triples (a, b, c) of distinct elements of a finite set A. Suppose that

1. $(a, b, c) \in S$ if and only if $(b, c, a) \in S$;
2. $(a, b, c) \in S$ if and only if $(c, b, a) \notin S$;
3. (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S.

Prove that there exists a one-to-one function g from A to R such that $g(a)<g(b)<g(c)$ implies $(a, b, c) \in S$. Note: R is the set of real numbers.

Putnam 1996/A5. If p is a prime number greater than 3 and $k=\lfloor 2 p / 3\rfloor$, prove that the sum

$$
\binom{p}{1}+\binom{p}{2}+\cdots+\binom{p}{k}
$$

of binomial coefficients is divisible by p^{2}.
Putnam 1996/A6. Let $c>0$ be a constant. Give a complete description, with proof, of the set of all continuous functions $f: R \rightarrow R$ such that $f(x)=f\left(x^{2}+c\right)$ for all $x \in R$. Note that R denotes the set of real numbers.

