Putnam ${ }^{5.9}$

Po-Shen Loh

25 October 2020

1 Problems

Putnam 2012/B4. Suppose that $a_{0}=1$ and that $a_{n+1}=a_{n}+e^{-a_{n}}$ for $n=0,1,2, \ldots$ Does $a_{n}-\log n$ have a finite limit as $n \rightarrow \infty$? (Here $\log n=\log _{e} n=\ln n$.)

Putnam 2012/B5. Prove that, for any two bounded functions $g_{1}, g_{2}: \mathbb{R} \rightarrow[1, \infty)$, there exist functions $h_{1}, h_{2}: \mathbb{R} \rightarrow \mathbb{R}$ such that, for every $x \in \mathbb{R}$,

$$
\sup _{s \in \mathbb{R}}\left(g_{1}(s)^{x} g_{2}(s)\right)=\max _{t \in \mathbb{R}}\left(x h_{1}(t)+h_{2}(t)\right) .
$$

Putnam 2012/B6. Let p be an odd prime number such that $p \equiv 2(\bmod 3)$. Define a permutation π of the residue classes modulo p by $\pi(x) \equiv x^{3}(\bmod p)$. Show that π is an even permutation if and only if $p \equiv 3(\bmod 4)$.

