Putnam 5.8

Po-Shen Loh

18 October 2020

1 Problems

Putnam 2012/A4. Let q and r be integers with $q>0$, and let A and B be intervals on the real line. Let T be the set of all $b+m q$ where b and m are integers with b in B, and let S be the set of all integers a in A such that $r a$ is in T. Show that if the product of the lengths of A and B is less than q, then S is the intersection of A with some arithmetic progression.

Putnam 2012/A5. Let \mathbb{F}_{p} denote the field of integers modulo a prime p, and let n be a positive integer. Let v be a fixed vector in \mathbb{F}_{p}^{n}, let M be an $n \times n$ matrix with entries of \mathbb{F}_{p}, and define $G: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{n}$ by $G(x)=v+M x$. Let $G^{(k)}$ denote the k-fold composition of G with itself, that is, $G^{(1)}(x)=G(x)$ and $G^{(k+1)}(x)=G\left(G^{(k)}(x)\right)$. Determine all pairs p, n for which there exist v and M such that the p^{n} vectors $G^{(k)}(0), k=1,2, \ldots, p^{n}$ are distinct.

Putnam 2012/A6. Let $f(x, y)$ be a continuous, real-valued function on \mathbb{R}^{2}. Suppose that, for every rectangular region R of area 1 , the double integral of $f(x, y)$ over R equals 0 . Must $f(x, y)$ be identically 0 ?

