Putnam $\Sigma .7$

Po-Shen Loh

11 October 2020

1 Problems

Putnam 1997/B4. Let $a_{m, n}$ denote the coefficient of x^{n} in the expansion of $\left(1+x+x^{2}\right)^{m}$. Prove that for all integers $k \geq 0$,

$$
0 \leq \sum_{i=0}^{\left\lfloor\frac{2 k}{3}\right\rfloor}(-1)^{i} a_{k-i, i} \leq 1
$$

Putnam 1997/B5. Prove that for $n \geq 2$,

$$
\overbrace{2^{2^{\omega^{2}}}}^{n \text { terms }} \equiv \overbrace{2^{2^{\cdots^{2}}}}^{n-1 \text { terms }}(\bmod n) .
$$

Putnam 1997/B6. The dissection of the 3-4-5 triangle into four congruent right triangles similar to the original has diameter $5 / 2$. (The diameter of a dissection is the least upper bound of the distances between pairs of points belonging to the same part.) Find the least diameter of a dissection of this triangle into four parts.

