Putnam 5.6

Po-Shen Loh

4 October 2020

1 Problems

Putnam 1997/A4. Let G be a group with identity e and $\phi: G \rightarrow G$ a function such that

$$
\phi\left(g_{1}\right) \phi\left(g_{2}\right) \phi\left(g_{3}\right)=\phi\left(h_{1}\right) \phi\left(h_{2}\right) \phi\left(h_{3}\right)
$$

whenever $g_{1} g_{2} g_{3}=e=h_{1} h_{2} h_{3}$. Prove that there exists an element $a \in G$ such that $\psi(x)=a \phi(x)$ is a homomorphism (i.e. $\psi(x y)=\psi(x) \psi(y)$ for all $x, y \in G)$.

Putnam 1997/A5. Let N_{n} denote the number of ordered n-tuples of positive integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $1 / a_{1}+1 / a_{2}+\ldots+1 / a_{n}=1$. Determine whether N_{10} is even or odd.
Putnam 1997/A6. For a positive integer n and any real number c, define x_{k} recursively by $x_{0}=0, x_{1}=1$, and for $k \geq 0$,

$$
x_{k+2}=\frac{c x_{k+1}-(n-k) x_{k}}{k+1}
$$

Fix n and then take c to be the largest value for which $x_{n+1}=0$. Find x_{k} in terms of n and k, $1 \leq k \leq n$.

