Putnam 2.5

Po-Shen Loh

27 September 2020

1 Problems

Putnam 2011/B4. In a tournament, 2011 players meet 2011 times to play a multiplayer game. Every game is played by all 2011 players together and ends with each of the players either winning or losing. The standings are kept in two 2011×2011 matrices, $T=\left(T_{h k}\right)$ and $W=\left(W_{h k}\right)$. Initially, $T=W=0$. After every game, for every (h, k) (including for $h=k$), if players h and k tied (that is, both won or both lost), the entry $T_{h k}$ is increased by 1 , while if player h won and player k lost, the entry $W_{h k}$ is increased by 1 and $W_{k h}$ is decreased by 1 .
Prove that at the end of the tournament, $\operatorname{det}(T+i W)$ is a non-negative integer divisible by 2^{2010}.
Putnam 2011/B5. Let a_{1}, a_{2}, \ldots be real numbers. Suppose that there is a constant A such that for all n,

$$
\int_{-\infty}^{\infty}\left(\sum_{i=1}^{n} \frac{1}{1+\left(x-a_{i}\right)^{2}}\right)^{2} d x \leq A n
$$

Prove there is a constant $B>0$ such that for all n,

$$
\sum_{i, j=1}^{n}\left(1+\left(a_{i}-a_{j}\right)^{2}\right) \geq B n^{3}
$$

Putnam 2011/B6. Let p be an odd prime. Show that for at least $(p+1) / 2$ values of n in $\{0,1,2, \ldots, p-1\}$,

$$
\sum_{k=0}^{p-1} k!n^{k} \quad \text { is not divisible by } p
$$

