Putnam 5.4

Po-Shen Loh

20 September 2020

1 Problems

Putnam 1998/B4. Find necessary and sufficient conditions on positive integers m and n so that

$$
\sum_{i=0}^{m n-1}(-1)^{\lfloor i / m\rfloor+\lfloor i / n\rfloor}=0
$$

Putnam 1998/B5. Let N be the positive integer with 1998 decimal digits, all of them 1 ; that is,

$$
N=1111 \cdots 11
$$

Find the thousandth digit after the decimal point of \sqrt{N}.
Putnam 1998/B6. Prove that, for any integers a, b, c, there always exists a positive integer n such that $\sqrt{n^{3}+a n^{2}+b n+c}$ is not an integer.

