Putnam E. 13

Po-Shen Loh

24 Nov 2020

1 Problems

Putnam 1982/B1. $A B C$ is an arbitrary triangle, and M is the midpoint of $B C$. How many pieces are needed to dissect $A M B$ into triangles which can be reassembled to give $A M C$?

Putnam 1982/B2. Let $a(r)$ be the number of lattice points inside the circle centered at the origin, with radius r. Let

$$
k=1+e^{-1}+e^{-4}+\cdots+e^{-n^{2}}+\cdots
$$

Express

$$
\int_{\mathbb{R}^{2}} a\left(\sqrt{x^{2}+y^{2}}\right) e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

as a polynomial in k.
Putnam 1982/B3. Let p_{n} be the probability that two numbers selected independently and randomly from $\{1,2,3, \ldots, n\}$ have a sum which is a square. Find $\lim _{n \rightarrow \infty} p_{n} \sqrt{n}$.

