Putnam E.13

Po-Shen Loh

24 Nov 2020

1 Problems

Putnam 1982/B1. ABC is an arbitrary triangle, and M is the midpoint of BC. How many pieces are needed to dissect AMB into triangles which can be reassembled to give AMC?

Putnam 1982/B2. Let a(r) be the number of lattice points inside the circle centered at the origin, with radius r. Let

$$k = 1 + e^{-1} + e^{-4} + \dots + e^{-n^2} + \dots$$

Express

$$\int_{\mathbb{R}^2} a(\sqrt{x^2 + y^2}) e^{-(x^2 + y^2)} dx dy$$

as a polynomial in k.

Putnam 1982/B3. Let p_n be the probability that two numbers selected independently and randomly from $\{1, 2, 3, \ldots, n\}$ have a sum which is a square. Find $\lim_{n\to\infty} p_n \sqrt{n}$.