Putnam E. 11

Po-Shen Loh

10 Nov 2020

1 Problems

Putnam 1983/B2. Let $f(n)$ be the number of ways of representing n as a sum of powers of 2 with no power being used more than 3 times. For example, $f(7)=4$ (the representations are $4+2+1,4+1+1+1$, $2+2+2+1,2+2+1+1+1)$. Can we find a real polynomial $p(x)$ such that $f(n)=\lfloor p(n)\rfloor$?

Putnam 1983/A3. Let $f(n)=1+2 n+3 n^{2}+\cdots+(p-1) n^{p-2}$, where p is an odd prime. Prove that if $f(m)=f(n)(\bmod p)$, then $m=n(\bmod p)$.

Putnam 1983/B3. Let y_{1}, y_{2}, and y_{3} be solutions of $y^{\prime \prime \prime}+a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ such that $y_{1}^{2}+$ $y_{2}^{2}+y_{3}^{2}=1$ for all x. Find constants α and β such that $y_{1}^{\prime}(x)^{2}+y_{2}^{\prime}(x)^{2}+y_{3}^{\prime}(x)^{2}$ is a solution of $y^{\prime}+\alpha a(x) y+\beta c(x)=0$.

