Putnam E.11

Po-Shen Loh

10 Nov 2020

1 Problems

- **Putnam 1983/B2.** Let f(n) be the number of ways of representing n as a sum of powers of 2 with no power being used more than 3 times. For example, f(7) = 4 (the representations are 4 + 2 + 1, 4 + 1 + 1 + 1, 2 + 2 + 2 + 1, 2 + 2 + 1 + 1 + 1). Can we find a real polynomial p(x) such that $f(n) = \lfloor p(n) \rfloor$?
- **Putnam 1983/A3.** Let $f(n) = 1 + 2n + 3n^2 + \cdots + (p-1)n^{p-2}$, where p is an odd prime. Prove that if $f(m) = f(n) \pmod{p}$, then $m = n \pmod{p}$.
- **Putnam 1983/B3.** Let y_1 , y_2 , and y_3 be solutions of y''' + a(x)y'' + b(x)y' + c(x)y = 0 such that $y_1^2 + y_2^2 + y_3^2 = 1$ for all x. Find constants α and β such that $y_1'(x)^2 + y_2'(x)^2 + y_3'(x)^2$ is a solution of $y' + \alpha a(x)y + \beta c(x) = 0$.