Putnam E. 10

Po-Shen Loh

3 Nov 2020

1 Problems

Putnam 1984/B1. Define $f(n)=1!+2!+\cdots+n!$. Find a recurrence relation $f(n+2)=a(n) f(n+1)+$ $b(n) f(n)$, where $a(x)$ and $b(x)$ are polynomials.

Putnam 1984/B2. Find the minimum of $f(x, y)=(x-y)^{2}+\left(\sqrt{2-x^{2}}-\frac{9}{y}\right)^{2}$ in the half-infinite strip $0<x<\sqrt{2}, y>0$.

Putnam 1984/B3. Let S be a set with n elements. Can we find a binary operation \star on S which satisfies (1) right cancellation: $a \star c=b \star c$ implies $a=b$ (for all a, b, c), and (2) total non-associativity: $a \star(b \star c) \neq(a \star b) \star c$ for all a, b, c ? Note that we are not just requiring that \star is not associative, but that it is never associative.

