Putnam E. 8

Po-Shen Loh

20 Oct 2020

1 Problems

Putnam 1985/B1. Let k be the smallest positive integer with the following property: there are distinct integers $m_{1}, m_{2}, m_{3}, m_{4}$, and m_{5} such that the polynomial

$$
p(x)=\left(x-m_{1}\right)\left(x-m_{2}\right)\left(x-m_{3}\right)\left(x-m_{4}\right)\left(x-m_{5}\right)
$$

has exactly k nonzero coefficients. Find, with proof, a set of integers $m_{1}, m_{2}, m_{3}, m_{4}$, and m_{5} for which this minimum k is achieved.

Putnam 1985/B2. Define polynomials $f_{n}(x)$ for $n \geq 0$ by $f_{0}(x)=1, f_{n}(0)=0$ for $n \geq 1$, and

$$
\frac{d}{d x}\left(f_{n+1}(x)\right)=(n+1) f_{n}(x+1)
$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.
Putnam 1985/B3. Let

be a doubly infinite array of positive integers, and suppose each positive integer appears exactly eight times in the array. Prove that $a_{m, n}>m n$ for some pair of positive integers (m, n).

