Putnam E. 6

Po-Shen Loh

6 Oct 2020

1 Problems

Putnam 1986/B1. Inscribe a rectangle of base b and height h in a circle of radius one. Further inscribe an isosceles triangle of base b between the b-side of the rectangle and the minor arc of the circle that it determines. For what value of h do the rectangle and triangle have the same area?

Putnam 1986/B2. Prove that there are only a finite number of possibilities for the ordered triple $T=$ $(x-y, y-z, z-x)$, where x, y, and z are complex numbers satisfying the simultaneous equations

$$
x(x-1)+2 y z=y(y-1)+2 z x=z(z-1)+2 x y
$$

and list all such triples T.
Putnam 1986/B3. Let Γ consist of all polynomials in x with integer coefficients. For f and g in Γ and m a positive integer, let $f \equiv g(\bmod m)$ mean that every coefficient of $f-g$ is an integral multiple of m. Let n and p be positive integers with p prime. Given that f, g, h, r, and s are in Γ with $r f+s g \equiv 1(\bmod p)$ and $f g \equiv h(\bmod p)$, prove that there exist F and G in Γ with $F \equiv f(\bmod p)$, $G \equiv g(\bmod p)$, and $F G \equiv h\left(\bmod p^{n}\right)$.

